(0) Obligation:
Clauses:
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).
Queries:
less(a,g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
less1(0, s(T4)).
less1(s(0), s(s(T14))).
less1(s(s(T21)), s(s(T20))) :- less1(T21, T20).
less1(s(0), s(s(T33))).
less1(s(s(T40)), s(s(T39))) :- less1(T40, T39).
Queries:
less1(a,g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
less1_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
less1_in_ag(0, s(T4)) → less1_out_ag(0, s(T4))
less1_in_ag(s(0), s(s(T14))) → less1_out_ag(s(0), s(s(T14)))
less1_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, less1_in_ag(T21, T20))
less1_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, less1_in_ag(T40, T39))
U2_ag(T40, T39, less1_out_ag(T40, T39)) → less1_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, less1_out_ag(T21, T20)) → less1_out_ag(s(s(T21)), s(s(T20)))
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
less1_out_ag(
x1,
x2) =
less1_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
less1_in_ag(0, s(T4)) → less1_out_ag(0, s(T4))
less1_in_ag(s(0), s(s(T14))) → less1_out_ag(s(0), s(s(T14)))
less1_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, less1_in_ag(T21, T20))
less1_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, less1_in_ag(T40, T39))
U2_ag(T40, T39, less1_out_ag(T40, T39)) → less1_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, less1_out_ag(T21, T20)) → less1_out_ag(s(s(T21)), s(s(T20)))
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
less1_out_ag(
x1,
x2) =
less1_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, less1_in_ag(T21, T20))
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
LESS1_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, less1_in_ag(T40, T39))
The TRS R consists of the following rules:
less1_in_ag(0, s(T4)) → less1_out_ag(0, s(T4))
less1_in_ag(s(0), s(s(T14))) → less1_out_ag(s(0), s(s(T14)))
less1_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, less1_in_ag(T21, T20))
less1_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, less1_in_ag(T40, T39))
U2_ag(T40, T39, less1_out_ag(T40, T39)) → less1_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, less1_out_ag(T21, T20)) → less1_out_ag(s(s(T21)), s(s(T20)))
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
less1_out_ag(
x1,
x2) =
less1_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, less1_in_ag(T21, T20))
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
LESS1_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, less1_in_ag(T40, T39))
The TRS R consists of the following rules:
less1_in_ag(0, s(T4)) → less1_out_ag(0, s(T4))
less1_in_ag(s(0), s(s(T14))) → less1_out_ag(s(0), s(s(T14)))
less1_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, less1_in_ag(T21, T20))
less1_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, less1_in_ag(T40, T39))
U2_ag(T40, T39, less1_out_ag(T40, T39)) → less1_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, less1_out_ag(T21, T20)) → less1_out_ag(s(s(T21)), s(s(T20)))
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
less1_out_ag(
x1,
x2) =
less1_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
The TRS R consists of the following rules:
less1_in_ag(0, s(T4)) → less1_out_ag(0, s(T4))
less1_in_ag(s(0), s(s(T14))) → less1_out_ag(s(0), s(s(T14)))
less1_in_ag(s(s(T21)), s(s(T20))) → U1_ag(T21, T20, less1_in_ag(T21, T20))
less1_in_ag(s(s(T40)), s(s(T39))) → U2_ag(T40, T39, less1_in_ag(T40, T39))
U2_ag(T40, T39, less1_out_ag(T40, T39)) → less1_out_ag(s(s(T40)), s(s(T39)))
U1_ag(T21, T20, less1_out_ag(T21, T20)) → less1_out_ag(s(s(T21)), s(s(T20)))
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
less1_out_ag(
x1,
x2) =
less1_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
U2_ag(
x1,
x2,
x3) =
U2_ag(
x3)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T20))) → LESS1_IN_AG(T20)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESS1_IN_AG(s(s(T20))) → LESS1_IN_AG(T20)
The graph contains the following edges 1 > 1
(14) YES