(0) Obligation:
Clauses:
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).
Queries:
less(a,g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
less1(s(s(T21)), s(s(T20))) :- less1(T21, T20).
less1(s(s(T40)), s(s(T39))) :- less1(T40, T39).
Clauses:
lessc1(0, s(T4)).
lessc1(s(0), s(s(T14))).
lessc1(s(s(T21)), s(s(T20))) :- lessc1(T21, T20).
lessc1(s(0), s(s(T33))).
lessc1(s(s(T40)), s(s(T39))) :- lessc1(T40, T39).
Afs:
less1(x1, x2) = less1(x2)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
less1_in: (f,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, less1_in_ag(T21, T20))
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
LESS1_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, less1_in_ag(T40, T39))
R is empty.
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → U1_AG(T21, T20, less1_in_ag(T21, T20))
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
LESS1_IN_AG(s(s(T40)), s(s(T39))) → U2_AG(T40, T39, less1_in_ag(T40, T39))
R is empty.
The argument filtering Pi contains the following mapping:
less1_in_ag(
x1,
x2) =
less1_in_ag(
x2)
s(
x1) =
s(
x1)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
U2_AG(
x1,
x2,
x3) =
U2_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T21)), s(s(T20))) → LESS1_IN_AG(T21, T20)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
LESS1_IN_AG(
x1,
x2) =
LESS1_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(8) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LESS1_IN_AG(s(s(T20))) → LESS1_IN_AG(T20)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(9) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- LESS1_IN_AG(s(s(T20))) → LESS1_IN_AG(T20)
The graph contains the following edges 1 > 1
(10) YES