(0) Obligation:

Clauses:

insert(X, void, tree(X, void, void)).
insert(X, tree(X, Left, Right), tree(X, Left, Right)).
insert(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), insert(X, Left, Left1)).
insert(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), insert(X, Right, Right1)).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

insert(a,g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

less23(s(T62), s(T61)) :- less23(T62, T61).
less36(s(T99), s(T101)) :- less36(T99, T101).
p21(T43, T42, T22, T44) :- less23(T43, T42).
p21(T47, T42, T22, T48) :- ','(lessc23(T47, T42), insert1(s(T47), T22, T48)).
p46(0, s(T124), T114, T123) :- insert1(s(T124), T114, T123).
p46(s(T131), s(T133), T114, T134) :- p53(T131, T133, T114, T134).
p53(T131, T133, T114, T134) :- less36(T131, T133).
p53(T131, T137, T114, T138) :- ','(lessc36(T131, T137), insert1(s(T137), T114, T138)).
insert1(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) :- insert1(0, T22, T32).
insert1(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) :- p21(T43, T42, T22, T44).
insert1(T82, tree(T78, T79, T80), tree(T78, T79, T83)) :- less36(T78, T82).
insert1(T86, tree(T78, T79, T80), tree(T78, T79, T87)) :- ','(lessc36(T78, T86), insert1(T86, T80, T87)).
insert1(T116, tree(T112, T113, T114), tree(T112, T113, T117)) :- p46(T112, T116, T114, T117).
insert1(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) :- insert1(0, T150, T160).
insert1(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) :- p21(T171, T170, T150, T172).
insert1(T190, tree(T186, T187, T188), tree(T186, T187, T191)) :- p46(T186, T190, T188, T191).
insert1(s(T212), tree(0, T201, T202), tree(0, T201, T211)) :- insert1(s(T212), T202, T211).
insert1(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) :- p53(T219, T221, T202, T222).

Clauses:

insertc1(T5, void, tree(T5, void, void)).
insertc1(T12, tree(T12, T13, T14), tree(T12, T13, T14)).
insertc1(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) :- insertc1(0, T22, T32).
insertc1(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) :- qc21(T43, T42, T22, T44).
insertc1(T86, tree(T78, T79, T80), tree(T78, T79, T87)) :- ','(lessc36(T78, T86), insertc1(T86, T80, T87)).
insertc1(T116, tree(T112, T113, T114), tree(T112, T113, T117)) :- qc46(T112, T116, T114, T117).
insertc1(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) :- insertc1(0, T150, T160).
insertc1(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) :- qc21(T171, T170, T150, T172).
insertc1(T190, tree(T186, T187, T188), tree(T186, T187, T191)) :- qc46(T186, T190, T188, T191).
insertc1(s(T212), tree(0, T201, T202), tree(0, T201, T211)) :- insertc1(s(T212), T202, T211).
insertc1(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) :- qc53(T219, T221, T202, T222).
lessc23(0, s(T55)).
lessc23(s(T62), s(T61)) :- lessc23(T62, T61).
lessc36(0, s(T94)).
lessc36(s(T99), s(T101)) :- lessc36(T99, T101).
qc21(T47, T42, T22, T48) :- ','(lessc23(T47, T42), insertc1(s(T47), T22, T48)).
qc46(0, s(T124), T114, T123) :- insertc1(s(T124), T114, T123).
qc46(s(T131), s(T133), T114, T134) :- qc53(T131, T133, T114, T134).
qc53(T131, T137, T114, T138) :- ','(lessc36(T131, T137), insertc1(s(T137), T114, T138)).

Afs:

insert1(x1, x2, x3)  =  insert1(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
insert1_in: (f,b,f) (b,b,f)
p21_in: (b,b,b,f) (f,b,b,f)
less23_in: (b,b) (f,b)
lessc23_in: (b,b) (f,b)
less36_in: (b,b) (b,f)
lessc36_in: (b,b) (b,f)
p46_in: (b,b,b,f) (b,f,b,f)
p53_in: (b,b,b,f) (b,f,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_AGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → U11_AGA(T31, T22, T23, T32, insert1_in_gga(0, T22, T32))
INSERT1_IN_AGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → U11_GGA(T31, T22, T23, T32, insert1_in_gga(0, T22, T32))
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → U12_GGA(T43, T42, T22, T23, T44, p21_in_ggga(T43, T42, T22, T44))
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_GGGA(T43, T42, T22, T44)
P21_IN_GGGA(T43, T42, T22, T44) → U3_GGGA(T43, T42, T22, T44, less23_in_gg(T43, T42))
P21_IN_GGGA(T43, T42, T22, T44) → LESS23_IN_GG(T43, T42)
LESS23_IN_GG(s(T62), s(T61)) → U1_GG(T62, T61, less23_in_gg(T62, T61))
LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)
P21_IN_GGGA(T47, T42, T22, T48) → U4_GGGA(T47, T42, T22, T48, lessc23_in_gg(T47, T42))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → U5_GGGA(T47, T42, T22, T48, insert1_in_gga(s(T47), T22, T48))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_GGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → U13_GGA(T82, T78, T79, T80, T83, less36_in_gg(T78, T82))
INSERT1_IN_GGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → LESS36_IN_GG(T78, T82)
LESS36_IN_GG(s(T99), s(T101)) → U2_GG(T99, T101, less36_in_gg(T99, T101))
LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)
INSERT1_IN_GGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_GGA(T86, T78, T79, T80, T87, lessc36_in_gg(T78, T86))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → U15_GGA(T86, T78, T79, T80, T87, insert1_in_gga(T86, T80, T87))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80, T87)
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → U16_GGA(T116, T112, T113, T114, T117, p46_in_ggga(T112, T116, T114, T117))
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GGGA(T112, T116, T114, T117)
P46_IN_GGGA(0, s(T124), T114, T123) → U6_GGGA(T124, T114, T123, insert1_in_gga(s(T124), T114, T123))
P46_IN_GGGA(0, s(T124), T114, T123) → INSERT1_IN_GGA(s(T124), T114, T123)
INSERT1_IN_GGA(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) → U17_GGA(T159, T150, T151, T160, insert1_in_gga(0, T150, T160))
INSERT1_IN_GGA(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) → U18_GGA(T171, T170, T150, T151, T172, p21_in_ggga(T171, T170, T150, T172))
INSERT1_IN_GGA(T190, tree(T186, T187, T188), tree(T186, T187, T191)) → U19_GGA(T190, T186, T187, T188, T191, p46_in_ggga(T186, T190, T188, T191))
P46_IN_GGGA(s(T131), s(T133), T114, T134) → U7_GGGA(T131, T133, T114, T134, p53_in_ggga(T131, T133, T114, T134))
P46_IN_GGGA(s(T131), s(T133), T114, T134) → P53_IN_GGGA(T131, T133, T114, T134)
P53_IN_GGGA(T131, T133, T114, T134) → U8_GGGA(T131, T133, T114, T134, less36_in_gg(T131, T133))
P53_IN_GGGA(T131, T133, T114, T134) → LESS36_IN_GG(T131, T133)
P53_IN_GGGA(T131, T137, T114, T138) → U9_GGGA(T131, T137, T114, T138, lessc36_in_gg(T131, T137))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → U10_GGGA(T131, T137, T114, T138, insert1_in_gga(s(T137), T114, T138))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114, T138)
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → U20_GGA(T212, T201, T202, T211, insert1_in_gga(s(T212), T202, T211))
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_GGA(s(T212), T202, T211)
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → U21_GGA(T221, T219, T201, T202, T222, p53_in_ggga(T219, T221, T202, T222))
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GGGA(T219, T221, T202, T222)
INSERT1_IN_AGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → U12_AGA(T43, T42, T22, T23, T44, p21_in_agga(T43, T42, T22, T44))
INSERT1_IN_AGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_AGGA(T43, T42, T22, T44)
P21_IN_AGGA(T43, T42, T22, T44) → U3_AGGA(T43, T42, T22, T44, less23_in_ag(T43, T42))
P21_IN_AGGA(T43, T42, T22, T44) → LESS23_IN_AG(T43, T42)
LESS23_IN_AG(s(T62), s(T61)) → U1_AG(T62, T61, less23_in_ag(T62, T61))
LESS23_IN_AG(s(T62), s(T61)) → LESS23_IN_AG(T62, T61)
P21_IN_AGGA(T47, T42, T22, T48) → U4_AGGA(T47, T42, T22, T48, lessc23_in_ag(T47, T42))
U4_AGGA(T47, T42, T22, T48, lessc23_out_ag(T47, T42)) → U5_AGGA(T47, T42, T22, T48, insert1_in_gga(s(T47), T22, T48))
U4_AGGA(T47, T42, T22, T48, lessc23_out_ag(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_AGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → U13_AGA(T82, T78, T79, T80, T83, less36_in_ga(T78, T82))
INSERT1_IN_AGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → LESS36_IN_GA(T78, T82)
LESS36_IN_GA(s(T99), s(T101)) → U2_GA(T99, T101, less36_in_ga(T99, T101))
LESS36_IN_GA(s(T99), s(T101)) → LESS36_IN_GA(T99, T101)
INSERT1_IN_AGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_AGA(T86, T78, T79, T80, T87, lessc36_in_ga(T78, T86))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → U15_AGA(T86, T78, T79, T80, T87, insert1_in_aga(T86, T80, T87))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → INSERT1_IN_AGA(T86, T80, T87)
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → U16_AGA(T116, T112, T113, T114, T117, p46_in_gaga(T112, T116, T114, T117))
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GAGA(T112, T116, T114, T117)
P46_IN_GAGA(0, s(T124), T114, T123) → U6_GAGA(T124, T114, T123, insert1_in_aga(s(T124), T114, T123))
P46_IN_GAGA(0, s(T124), T114, T123) → INSERT1_IN_AGA(s(T124), T114, T123)
INSERT1_IN_AGA(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) → U17_AGA(T159, T150, T151, T160, insert1_in_gga(0, T150, T160))
INSERT1_IN_AGA(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) → U18_AGA(T171, T170, T150, T151, T172, p21_in_agga(T171, T170, T150, T172))
INSERT1_IN_AGA(T190, tree(T186, T187, T188), tree(T186, T187, T191)) → U19_AGA(T190, T186, T187, T188, T191, p46_in_gaga(T186, T190, T188, T191))
P46_IN_GAGA(s(T131), s(T133), T114, T134) → U7_GAGA(T131, T133, T114, T134, p53_in_gaga(T131, T133, T114, T134))
P46_IN_GAGA(s(T131), s(T133), T114, T134) → P53_IN_GAGA(T131, T133, T114, T134)
P53_IN_GAGA(T131, T133, T114, T134) → U8_GAGA(T131, T133, T114, T134, less36_in_ga(T131, T133))
P53_IN_GAGA(T131, T133, T114, T134) → LESS36_IN_GA(T131, T133)
P53_IN_GAGA(T131, T137, T114, T138) → U9_GAGA(T131, T137, T114, T138, lessc36_in_ga(T131, T137))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → U10_GAGA(T131, T137, T114, T138, insert1_in_aga(s(T137), T114, T138))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → INSERT1_IN_AGA(s(T137), T114, T138)
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → U20_AGA(T212, T201, T202, T211, insert1_in_aga(s(T212), T202, T211))
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_AGA(s(T212), T202, T211)
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → U21_AGA(T221, T219, T201, T202, T222, p53_in_gaga(T219, T221, T202, T222))
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GAGA(T219, T221, T202, T222)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
insert1_in_aga(x1, x2, x3)  =  insert1_in_aga(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
insert1_in_gga(x1, x2, x3)  =  insert1_in_gga(x1, x2)
0  =  0
p21_in_ggga(x1, x2, x3, x4)  =  p21_in_ggga(x1, x2, x3)
less23_in_gg(x1, x2)  =  less23_in_gg(x1, x2)
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
less36_in_gg(x1, x2)  =  less36_in_gg(x1, x2)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
p46_in_ggga(x1, x2, x3, x4)  =  p46_in_ggga(x1, x2, x3)
p53_in_ggga(x1, x2, x3, x4)  =  p53_in_ggga(x1, x2, x3)
p21_in_agga(x1, x2, x3, x4)  =  p21_in_agga(x2, x3)
less23_in_ag(x1, x2)  =  less23_in_ag(x2)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
less36_in_ga(x1, x2)  =  less36_in_ga(x1)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
p46_in_gaga(x1, x2, x3, x4)  =  p46_in_gaga(x1, x3)
p53_in_gaga(x1, x2, x3, x4)  =  p53_in_gaga(x1, x3)
INSERT1_IN_AGA(x1, x2, x3)  =  INSERT1_IN_AGA(x2)
U11_AGA(x1, x2, x3, x4, x5)  =  U11_AGA(x1, x2, x3, x5)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3, x4, x5)  =  U11_GGA(x1, x2, x3, x5)
U12_GGA(x1, x2, x3, x4, x5, x6)  =  U12_GGA(x1, x2, x3, x4, x6)
P21_IN_GGGA(x1, x2, x3, x4)  =  P21_IN_GGGA(x1, x2, x3)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x1, x2, x3, x5)
LESS23_IN_GG(x1, x2)  =  LESS23_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x1, x2, x3, x5)
U13_GGA(x1, x2, x3, x4, x5, x6)  =  U13_GGA(x1, x2, x3, x4, x6)
LESS36_IN_GG(x1, x2)  =  LESS36_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x2, x3)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
U15_GGA(x1, x2, x3, x4, x5, x6)  =  U15_GGA(x1, x2, x3, x4, x6)
U16_GGA(x1, x2, x3, x4, x5, x6)  =  U16_GGA(x1, x2, x3, x4, x6)
P46_IN_GGGA(x1, x2, x3, x4)  =  P46_IN_GGGA(x1, x2, x3)
U6_GGGA(x1, x2, x3, x4)  =  U6_GGGA(x1, x2, x4)
U17_GGA(x1, x2, x3, x4, x5)  =  U17_GGA(x1, x2, x3, x5)
U18_GGA(x1, x2, x3, x4, x5, x6)  =  U18_GGA(x1, x2, x3, x4, x6)
U19_GGA(x1, x2, x3, x4, x5, x6)  =  U19_GGA(x1, x2, x3, x4, x6)
U7_GGGA(x1, x2, x3, x4, x5)  =  U7_GGGA(x1, x2, x3, x5)
P53_IN_GGGA(x1, x2, x3, x4)  =  P53_IN_GGGA(x1, x2, x3)
U8_GGGA(x1, x2, x3, x4, x5)  =  U8_GGGA(x1, x2, x3, x5)
U9_GGGA(x1, x2, x3, x4, x5)  =  U9_GGGA(x1, x2, x3, x5)
U10_GGGA(x1, x2, x3, x4, x5)  =  U10_GGGA(x1, x2, x3, x5)
U20_GGA(x1, x2, x3, x4, x5)  =  U20_GGA(x1, x2, x3, x5)
U21_GGA(x1, x2, x3, x4, x5, x6)  =  U21_GGA(x1, x2, x3, x4, x6)
U12_AGA(x1, x2, x3, x4, x5, x6)  =  U12_AGA(x2, x3, x4, x6)
P21_IN_AGGA(x1, x2, x3, x4)  =  P21_IN_AGGA(x2, x3)
U3_AGGA(x1, x2, x3, x4, x5)  =  U3_AGGA(x2, x3, x5)
LESS23_IN_AG(x1, x2)  =  LESS23_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
U4_AGGA(x1, x2, x3, x4, x5)  =  U4_AGGA(x2, x3, x5)
U5_AGGA(x1, x2, x3, x4, x5)  =  U5_AGGA(x1, x2, x3, x5)
U13_AGA(x1, x2, x3, x4, x5, x6)  =  U13_AGA(x2, x3, x4, x6)
LESS36_IN_GA(x1, x2)  =  LESS36_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)
U14_AGA(x1, x2, x3, x4, x5, x6)  =  U14_AGA(x2, x3, x4, x6)
U15_AGA(x1, x2, x3, x4, x5, x6)  =  U15_AGA(x2, x3, x4, x6)
U16_AGA(x1, x2, x3, x4, x5, x6)  =  U16_AGA(x2, x3, x4, x6)
P46_IN_GAGA(x1, x2, x3, x4)  =  P46_IN_GAGA(x1, x3)
U6_GAGA(x1, x2, x3, x4)  =  U6_GAGA(x2, x4)
U17_AGA(x1, x2, x3, x4, x5)  =  U17_AGA(x1, x2, x3, x5)
U18_AGA(x1, x2, x3, x4, x5, x6)  =  U18_AGA(x2, x3, x4, x6)
U19_AGA(x1, x2, x3, x4, x5, x6)  =  U19_AGA(x2, x3, x4, x6)
U7_GAGA(x1, x2, x3, x4, x5)  =  U7_GAGA(x1, x3, x5)
P53_IN_GAGA(x1, x2, x3, x4)  =  P53_IN_GAGA(x1, x3)
U8_GAGA(x1, x2, x3, x4, x5)  =  U8_GAGA(x1, x3, x5)
U9_GAGA(x1, x2, x3, x4, x5)  =  U9_GAGA(x1, x3, x5)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)
U20_AGA(x1, x2, x3, x4, x5)  =  U20_AGA(x2, x3, x5)
U21_AGA(x1, x2, x3, x4, x5, x6)  =  U21_AGA(x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_AGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → U11_AGA(T31, T22, T23, T32, insert1_in_gga(0, T22, T32))
INSERT1_IN_AGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → U11_GGA(T31, T22, T23, T32, insert1_in_gga(0, T22, T32))
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → U12_GGA(T43, T42, T22, T23, T44, p21_in_ggga(T43, T42, T22, T44))
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_GGGA(T43, T42, T22, T44)
P21_IN_GGGA(T43, T42, T22, T44) → U3_GGGA(T43, T42, T22, T44, less23_in_gg(T43, T42))
P21_IN_GGGA(T43, T42, T22, T44) → LESS23_IN_GG(T43, T42)
LESS23_IN_GG(s(T62), s(T61)) → U1_GG(T62, T61, less23_in_gg(T62, T61))
LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)
P21_IN_GGGA(T47, T42, T22, T48) → U4_GGGA(T47, T42, T22, T48, lessc23_in_gg(T47, T42))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → U5_GGGA(T47, T42, T22, T48, insert1_in_gga(s(T47), T22, T48))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_GGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → U13_GGA(T82, T78, T79, T80, T83, less36_in_gg(T78, T82))
INSERT1_IN_GGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → LESS36_IN_GG(T78, T82)
LESS36_IN_GG(s(T99), s(T101)) → U2_GG(T99, T101, less36_in_gg(T99, T101))
LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)
INSERT1_IN_GGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_GGA(T86, T78, T79, T80, T87, lessc36_in_gg(T78, T86))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → U15_GGA(T86, T78, T79, T80, T87, insert1_in_gga(T86, T80, T87))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80, T87)
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → U16_GGA(T116, T112, T113, T114, T117, p46_in_ggga(T112, T116, T114, T117))
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GGGA(T112, T116, T114, T117)
P46_IN_GGGA(0, s(T124), T114, T123) → U6_GGGA(T124, T114, T123, insert1_in_gga(s(T124), T114, T123))
P46_IN_GGGA(0, s(T124), T114, T123) → INSERT1_IN_GGA(s(T124), T114, T123)
INSERT1_IN_GGA(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) → U17_GGA(T159, T150, T151, T160, insert1_in_gga(0, T150, T160))
INSERT1_IN_GGA(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) → U18_GGA(T171, T170, T150, T151, T172, p21_in_ggga(T171, T170, T150, T172))
INSERT1_IN_GGA(T190, tree(T186, T187, T188), tree(T186, T187, T191)) → U19_GGA(T190, T186, T187, T188, T191, p46_in_ggga(T186, T190, T188, T191))
P46_IN_GGGA(s(T131), s(T133), T114, T134) → U7_GGGA(T131, T133, T114, T134, p53_in_ggga(T131, T133, T114, T134))
P46_IN_GGGA(s(T131), s(T133), T114, T134) → P53_IN_GGGA(T131, T133, T114, T134)
P53_IN_GGGA(T131, T133, T114, T134) → U8_GGGA(T131, T133, T114, T134, less36_in_gg(T131, T133))
P53_IN_GGGA(T131, T133, T114, T134) → LESS36_IN_GG(T131, T133)
P53_IN_GGGA(T131, T137, T114, T138) → U9_GGGA(T131, T137, T114, T138, lessc36_in_gg(T131, T137))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → U10_GGGA(T131, T137, T114, T138, insert1_in_gga(s(T137), T114, T138))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114, T138)
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → U20_GGA(T212, T201, T202, T211, insert1_in_gga(s(T212), T202, T211))
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_GGA(s(T212), T202, T211)
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → U21_GGA(T221, T219, T201, T202, T222, p53_in_ggga(T219, T221, T202, T222))
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GGGA(T219, T221, T202, T222)
INSERT1_IN_AGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → U12_AGA(T43, T42, T22, T23, T44, p21_in_agga(T43, T42, T22, T44))
INSERT1_IN_AGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_AGGA(T43, T42, T22, T44)
P21_IN_AGGA(T43, T42, T22, T44) → U3_AGGA(T43, T42, T22, T44, less23_in_ag(T43, T42))
P21_IN_AGGA(T43, T42, T22, T44) → LESS23_IN_AG(T43, T42)
LESS23_IN_AG(s(T62), s(T61)) → U1_AG(T62, T61, less23_in_ag(T62, T61))
LESS23_IN_AG(s(T62), s(T61)) → LESS23_IN_AG(T62, T61)
P21_IN_AGGA(T47, T42, T22, T48) → U4_AGGA(T47, T42, T22, T48, lessc23_in_ag(T47, T42))
U4_AGGA(T47, T42, T22, T48, lessc23_out_ag(T47, T42)) → U5_AGGA(T47, T42, T22, T48, insert1_in_gga(s(T47), T22, T48))
U4_AGGA(T47, T42, T22, T48, lessc23_out_ag(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_AGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → U13_AGA(T82, T78, T79, T80, T83, less36_in_ga(T78, T82))
INSERT1_IN_AGA(T82, tree(T78, T79, T80), tree(T78, T79, T83)) → LESS36_IN_GA(T78, T82)
LESS36_IN_GA(s(T99), s(T101)) → U2_GA(T99, T101, less36_in_ga(T99, T101))
LESS36_IN_GA(s(T99), s(T101)) → LESS36_IN_GA(T99, T101)
INSERT1_IN_AGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_AGA(T86, T78, T79, T80, T87, lessc36_in_ga(T78, T86))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → U15_AGA(T86, T78, T79, T80, T87, insert1_in_aga(T86, T80, T87))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → INSERT1_IN_AGA(T86, T80, T87)
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → U16_AGA(T116, T112, T113, T114, T117, p46_in_gaga(T112, T116, T114, T117))
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GAGA(T112, T116, T114, T117)
P46_IN_GAGA(0, s(T124), T114, T123) → U6_GAGA(T124, T114, T123, insert1_in_aga(s(T124), T114, T123))
P46_IN_GAGA(0, s(T124), T114, T123) → INSERT1_IN_AGA(s(T124), T114, T123)
INSERT1_IN_AGA(0, tree(s(T159), T150, T151), tree(s(T159), T160, T151)) → U17_AGA(T159, T150, T151, T160, insert1_in_gga(0, T150, T160))
INSERT1_IN_AGA(s(T171), tree(s(T170), T150, T151), tree(s(T170), T172, T151)) → U18_AGA(T171, T170, T150, T151, T172, p21_in_agga(T171, T170, T150, T172))
INSERT1_IN_AGA(T190, tree(T186, T187, T188), tree(T186, T187, T191)) → U19_AGA(T190, T186, T187, T188, T191, p46_in_gaga(T186, T190, T188, T191))
P46_IN_GAGA(s(T131), s(T133), T114, T134) → U7_GAGA(T131, T133, T114, T134, p53_in_gaga(T131, T133, T114, T134))
P46_IN_GAGA(s(T131), s(T133), T114, T134) → P53_IN_GAGA(T131, T133, T114, T134)
P53_IN_GAGA(T131, T133, T114, T134) → U8_GAGA(T131, T133, T114, T134, less36_in_ga(T131, T133))
P53_IN_GAGA(T131, T133, T114, T134) → LESS36_IN_GA(T131, T133)
P53_IN_GAGA(T131, T137, T114, T138) → U9_GAGA(T131, T137, T114, T138, lessc36_in_ga(T131, T137))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → U10_GAGA(T131, T137, T114, T138, insert1_in_aga(s(T137), T114, T138))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → INSERT1_IN_AGA(s(T137), T114, T138)
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → U20_AGA(T212, T201, T202, T211, insert1_in_aga(s(T212), T202, T211))
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_AGA(s(T212), T202, T211)
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → U21_AGA(T221, T219, T201, T202, T222, p53_in_gaga(T219, T221, T202, T222))
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GAGA(T219, T221, T202, T222)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
insert1_in_aga(x1, x2, x3)  =  insert1_in_aga(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
insert1_in_gga(x1, x2, x3)  =  insert1_in_gga(x1, x2)
0  =  0
p21_in_ggga(x1, x2, x3, x4)  =  p21_in_ggga(x1, x2, x3)
less23_in_gg(x1, x2)  =  less23_in_gg(x1, x2)
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
less36_in_gg(x1, x2)  =  less36_in_gg(x1, x2)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
p46_in_ggga(x1, x2, x3, x4)  =  p46_in_ggga(x1, x2, x3)
p53_in_ggga(x1, x2, x3, x4)  =  p53_in_ggga(x1, x2, x3)
p21_in_agga(x1, x2, x3, x4)  =  p21_in_agga(x2, x3)
less23_in_ag(x1, x2)  =  less23_in_ag(x2)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
less36_in_ga(x1, x2)  =  less36_in_ga(x1)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
p46_in_gaga(x1, x2, x3, x4)  =  p46_in_gaga(x1, x3)
p53_in_gaga(x1, x2, x3, x4)  =  p53_in_gaga(x1, x3)
INSERT1_IN_AGA(x1, x2, x3)  =  INSERT1_IN_AGA(x2)
U11_AGA(x1, x2, x3, x4, x5)  =  U11_AGA(x1, x2, x3, x5)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3, x4, x5)  =  U11_GGA(x1, x2, x3, x5)
U12_GGA(x1, x2, x3, x4, x5, x6)  =  U12_GGA(x1, x2, x3, x4, x6)
P21_IN_GGGA(x1, x2, x3, x4)  =  P21_IN_GGGA(x1, x2, x3)
U3_GGGA(x1, x2, x3, x4, x5)  =  U3_GGGA(x1, x2, x3, x5)
LESS23_IN_GG(x1, x2)  =  LESS23_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x1, x2, x3, x5)
U13_GGA(x1, x2, x3, x4, x5, x6)  =  U13_GGA(x1, x2, x3, x4, x6)
LESS36_IN_GG(x1, x2)  =  LESS36_IN_GG(x1, x2)
U2_GG(x1, x2, x3)  =  U2_GG(x1, x2, x3)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
U15_GGA(x1, x2, x3, x4, x5, x6)  =  U15_GGA(x1, x2, x3, x4, x6)
U16_GGA(x1, x2, x3, x4, x5, x6)  =  U16_GGA(x1, x2, x3, x4, x6)
P46_IN_GGGA(x1, x2, x3, x4)  =  P46_IN_GGGA(x1, x2, x3)
U6_GGGA(x1, x2, x3, x4)  =  U6_GGGA(x1, x2, x4)
U17_GGA(x1, x2, x3, x4, x5)  =  U17_GGA(x1, x2, x3, x5)
U18_GGA(x1, x2, x3, x4, x5, x6)  =  U18_GGA(x1, x2, x3, x4, x6)
U19_GGA(x1, x2, x3, x4, x5, x6)  =  U19_GGA(x1, x2, x3, x4, x6)
U7_GGGA(x1, x2, x3, x4, x5)  =  U7_GGGA(x1, x2, x3, x5)
P53_IN_GGGA(x1, x2, x3, x4)  =  P53_IN_GGGA(x1, x2, x3)
U8_GGGA(x1, x2, x3, x4, x5)  =  U8_GGGA(x1, x2, x3, x5)
U9_GGGA(x1, x2, x3, x4, x5)  =  U9_GGGA(x1, x2, x3, x5)
U10_GGGA(x1, x2, x3, x4, x5)  =  U10_GGGA(x1, x2, x3, x5)
U20_GGA(x1, x2, x3, x4, x5)  =  U20_GGA(x1, x2, x3, x5)
U21_GGA(x1, x2, x3, x4, x5, x6)  =  U21_GGA(x1, x2, x3, x4, x6)
U12_AGA(x1, x2, x3, x4, x5, x6)  =  U12_AGA(x2, x3, x4, x6)
P21_IN_AGGA(x1, x2, x3, x4)  =  P21_IN_AGGA(x2, x3)
U3_AGGA(x1, x2, x3, x4, x5)  =  U3_AGGA(x2, x3, x5)
LESS23_IN_AG(x1, x2)  =  LESS23_IN_AG(x2)
U1_AG(x1, x2, x3)  =  U1_AG(x2, x3)
U4_AGGA(x1, x2, x3, x4, x5)  =  U4_AGGA(x2, x3, x5)
U5_AGGA(x1, x2, x3, x4, x5)  =  U5_AGGA(x1, x2, x3, x5)
U13_AGA(x1, x2, x3, x4, x5, x6)  =  U13_AGA(x2, x3, x4, x6)
LESS36_IN_GA(x1, x2)  =  LESS36_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)
U14_AGA(x1, x2, x3, x4, x5, x6)  =  U14_AGA(x2, x3, x4, x6)
U15_AGA(x1, x2, x3, x4, x5, x6)  =  U15_AGA(x2, x3, x4, x6)
U16_AGA(x1, x2, x3, x4, x5, x6)  =  U16_AGA(x2, x3, x4, x6)
P46_IN_GAGA(x1, x2, x3, x4)  =  P46_IN_GAGA(x1, x3)
U6_GAGA(x1, x2, x3, x4)  =  U6_GAGA(x2, x4)
U17_AGA(x1, x2, x3, x4, x5)  =  U17_AGA(x1, x2, x3, x5)
U18_AGA(x1, x2, x3, x4, x5, x6)  =  U18_AGA(x2, x3, x4, x6)
U19_AGA(x1, x2, x3, x4, x5, x6)  =  U19_AGA(x2, x3, x4, x6)
U7_GAGA(x1, x2, x3, x4, x5)  =  U7_GAGA(x1, x3, x5)
P53_IN_GAGA(x1, x2, x3, x4)  =  P53_IN_GAGA(x1, x3)
U8_GAGA(x1, x2, x3, x4, x5)  =  U8_GAGA(x1, x3, x5)
U9_GAGA(x1, x2, x3, x4, x5)  =  U9_GAGA(x1, x3, x5)
U10_GAGA(x1, x2, x3, x4, x5)  =  U10_GAGA(x1, x3, x5)
U20_AGA(x1, x2, x3, x4, x5)  =  U20_AGA(x2, x3, x5)
U21_AGA(x1, x2, x3, x4, x5, x6)  =  U21_AGA(x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 6 SCCs with 46 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS36_IN_GA(s(T99), s(T101)) → LESS36_IN_GA(T99, T101)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
LESS36_IN_GA(x1, x2)  =  LESS36_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS36_IN_GA(s(T99), s(T101)) → LESS36_IN_GA(T99, T101)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS36_IN_GA(x1, x2)  =  LESS36_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS36_IN_GA(s(T99)) → LESS36_IN_GA(T99)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS36_IN_GA(s(T99)) → LESS36_IN_GA(T99)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS23_IN_AG(s(T62), s(T61)) → LESS23_IN_AG(T62, T61)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
LESS23_IN_AG(x1, x2)  =  LESS23_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS23_IN_AG(s(T62), s(T61)) → LESS23_IN_AG(T62, T61)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS23_IN_AG(x1, x2)  =  LESS23_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS23_IN_AG(s(T61)) → LESS23_IN_AG(T61)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS23_IN_AG(s(T61)) → LESS23_IN_AG(T61)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
LESS36_IN_GG(x1, x2)  =  LESS36_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS36_IN_GG(s(T99), s(T101)) → LESS36_IN_GG(T99, T101)
    The graph contains the following edges 1 > 1, 2 > 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
LESS23_IN_GG(x1, x2)  =  LESS23_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS23_IN_GG(s(T62), s(T61)) → LESS23_IN_GG(T62, T61)
    The graph contains the following edges 1 > 1, 2 > 2

(34) YES

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_GGA(T86, T78, T79, T80, T87, lessc36_in_gg(T78, T86))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80, T87)
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GGGA(T112, T116, T114, T117)
P46_IN_GGGA(0, s(T124), T114, T123) → INSERT1_IN_GGA(s(T124), T114, T123)
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_GGGA(T43, T42, T22, T44)
P21_IN_GGGA(T47, T42, T22, T48) → U4_GGGA(T47, T42, T22, T48, lessc23_in_gg(T47, T42))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_GGA(s(T212), T202, T211)
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GGGA(T219, T221, T202, T222)
P53_IN_GGGA(T131, T137, T114, T138) → U9_GGGA(T131, T137, T114, T138, lessc36_in_gg(T131, T137))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114, T138)
P46_IN_GGGA(s(T131), s(T133), T114, T134) → P53_IN_GGGA(T131, T133, T114, T134)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
P21_IN_GGGA(x1, x2, x3, x4)  =  P21_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
P46_IN_GGGA(x1, x2, x3, x4)  =  P46_IN_GGGA(x1, x2, x3)
P53_IN_GGGA(x1, x2, x3, x4)  =  P53_IN_GGGA(x1, x2, x3)
U9_GGGA(x1, x2, x3, x4, x5)  =  U9_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_GGA(T86, T78, T79, T80, T87, lessc36_in_gg(T78, T86))
U14_GGA(T86, T78, T79, T80, T87, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80, T87)
INSERT1_IN_GGA(0, tree(s(T31), T22, T23), tree(s(T31), T32, T23)) → INSERT1_IN_GGA(0, T22, T32)
INSERT1_IN_GGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GGGA(T112, T116, T114, T117)
P46_IN_GGGA(0, s(T124), T114, T123) → INSERT1_IN_GGA(s(T124), T114, T123)
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23), tree(s(T42), T44, T23)) → P21_IN_GGGA(T43, T42, T22, T44)
P21_IN_GGGA(T47, T42, T22, T48) → U4_GGGA(T47, T42, T22, T48, lessc23_in_gg(T47, T42))
U4_GGGA(T47, T42, T22, T48, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22, T48)
INSERT1_IN_GGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_GGA(s(T212), T202, T211)
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GGGA(T219, T221, T202, T222)
P53_IN_GGGA(T131, T137, T114, T138) → U9_GGGA(T131, T137, T114, T138, lessc36_in_gg(T131, T137))
U9_GGGA(T131, T137, T114, T138, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114, T138)
P46_IN_GGGA(s(T131), s(T133), T114, T134) → P53_IN_GGGA(T131, T133, T114, T134)

The TRS R consists of the following rules:

lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
P21_IN_GGGA(x1, x2, x3, x4)  =  P21_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
P46_IN_GGGA(x1, x2, x3, x4)  =  P46_IN_GGGA(x1, x2, x3)
P53_IN_GGGA(x1, x2, x3, x4)  =  P53_IN_GGGA(x1, x2, x3)
U9_GGGA(x1, x2, x3, x4, x5)  =  U9_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(T86, tree(T78, T79, T80)) → U14_GGA(T86, T78, T79, T80, lessc36_in_gg(T78, T86))
U14_GGA(T86, T78, T79, T80, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80)
INSERT1_IN_GGA(0, tree(s(T31), T22, T23)) → INSERT1_IN_GGA(0, T22)
INSERT1_IN_GGA(T116, tree(T112, T113, T114)) → P46_IN_GGGA(T112, T116, T114)
P46_IN_GGGA(0, s(T124), T114) → INSERT1_IN_GGA(s(T124), T114)
INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23)) → P21_IN_GGGA(T43, T42, T22)
P21_IN_GGGA(T47, T42, T22) → U4_GGGA(T47, T42, T22, lessc23_in_gg(T47, T42))
U4_GGGA(T47, T42, T22, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22)
INSERT1_IN_GGA(s(T212), tree(0, T201, T202)) → INSERT1_IN_GGA(s(T212), T202)
INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202)) → P53_IN_GGGA(T219, T221, T202)
P53_IN_GGGA(T131, T137, T114) → U9_GGGA(T131, T137, T114, lessc36_in_gg(T131, T137))
U9_GGGA(T131, T137, T114, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114)
P46_IN_GGGA(s(T131), s(T133), T114) → P53_IN_GGGA(T131, T133, T114)

The TRS R consists of the following rules:

lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))

The set Q consists of the following terms:

lessc36_in_gg(x0, x1)
lessc23_in_gg(x0, x1)
U34_gg(x0, x1, x2)
U33_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(40) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U14_GGA(T86, T78, T79, T80, lessc36_out_gg(T78, T86)) → INSERT1_IN_GGA(T86, T80)
    The graph contains the following edges 1 >= 1, 5 > 1, 4 >= 2

  • INSERT1_IN_GGA(T86, tree(T78, T79, T80)) → U14_GGA(T86, T78, T79, T80, lessc36_in_gg(T78, T86))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4

  • INSERT1_IN_GGA(0, tree(s(T31), T22, T23)) → INSERT1_IN_GGA(0, T22)
    The graph contains the following edges 1 >= 1, 2 > 2

  • INSERT1_IN_GGA(s(T212), tree(0, T201, T202)) → INSERT1_IN_GGA(s(T212), T202)
    The graph contains the following edges 1 >= 1, 2 > 2

  • INSERT1_IN_GGA(T116, tree(T112, T113, T114)) → P46_IN_GGGA(T112, T116, T114)
    The graph contains the following edges 2 > 1, 1 >= 2, 2 > 3

  • P46_IN_GGGA(0, s(T124), T114) → INSERT1_IN_GGA(s(T124), T114)
    The graph contains the following edges 2 >= 1, 3 >= 2

  • P46_IN_GGGA(s(T131), s(T133), T114) → P53_IN_GGGA(T131, T133, T114)
    The graph contains the following edges 1 > 1, 2 > 2, 3 >= 3

  • P21_IN_GGGA(T47, T42, T22) → U4_GGGA(T47, T42, T22, lessc23_in_gg(T47, T42))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

  • P53_IN_GGGA(T131, T137, T114) → U9_GGGA(T131, T137, T114, lessc36_in_gg(T131, T137))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

  • U4_GGGA(T47, T42, T22, lessc23_out_gg(T47, T42)) → INSERT1_IN_GGA(s(T47), T22)
    The graph contains the following edges 3 >= 2

  • U9_GGGA(T131, T137, T114, lessc36_out_gg(T131, T137)) → INSERT1_IN_GGA(s(T137), T114)
    The graph contains the following edges 3 >= 2

  • INSERT1_IN_GGA(s(T43), tree(s(T42), T22, T23)) → P21_IN_GGGA(T43, T42, T22)
    The graph contains the following edges 1 > 1, 2 > 2, 2 > 3

  • INSERT1_IN_GGA(s(T221), tree(s(T219), T201, T202)) → P53_IN_GGGA(T219, T221, T202)
    The graph contains the following edges 2 > 1, 1 > 2, 2 > 3

(41) YES

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_AGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_AGA(T86, T78, T79, T80, T87, lessc36_in_ga(T78, T86))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → INSERT1_IN_AGA(T86, T80, T87)
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GAGA(T112, T116, T114, T117)
P46_IN_GAGA(0, s(T124), T114, T123) → INSERT1_IN_AGA(s(T124), T114, T123)
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_AGA(s(T212), T202, T211)
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GAGA(T219, T221, T202, T222)
P53_IN_GAGA(T131, T137, T114, T138) → U9_GAGA(T131, T137, T114, T138, lessc36_in_ga(T131, T137))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → INSERT1_IN_AGA(s(T137), T114, T138)
P46_IN_GAGA(s(T131), s(T133), T114, T134) → P53_IN_GAGA(T131, T133, T114, T134)

The TRS R consists of the following rules:

lessc23_in_gg(0, s(T55)) → lessc23_out_gg(0, s(T55))
lessc23_in_gg(s(T62), s(T61)) → U33_gg(T62, T61, lessc23_in_gg(T62, T61))
U33_gg(T62, T61, lessc23_out_gg(T62, T61)) → lessc23_out_gg(s(T62), s(T61))
lessc36_in_gg(0, s(T94)) → lessc36_out_gg(0, s(T94))
lessc36_in_gg(s(T99), s(T101)) → U34_gg(T99, T101, lessc36_in_gg(T99, T101))
U34_gg(T99, T101, lessc36_out_gg(T99, T101)) → lessc36_out_gg(s(T99), s(T101))
lessc23_in_ag(0, s(T55)) → lessc23_out_ag(0, s(T55))
lessc23_in_ag(s(T62), s(T61)) → U33_ag(T62, T61, lessc23_in_ag(T62, T61))
U33_ag(T62, T61, lessc23_out_ag(T62, T61)) → lessc23_out_ag(s(T62), s(T61))
lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
0  =  0
lessc23_in_gg(x1, x2)  =  lessc23_in_gg(x1, x2)
lessc23_out_gg(x1, x2)  =  lessc23_out_gg(x1, x2)
U33_gg(x1, x2, x3)  =  U33_gg(x1, x2, x3)
lessc36_in_gg(x1, x2)  =  lessc36_in_gg(x1, x2)
lessc36_out_gg(x1, x2)  =  lessc36_out_gg(x1, x2)
U34_gg(x1, x2, x3)  =  U34_gg(x1, x2, x3)
lessc23_in_ag(x1, x2)  =  lessc23_in_ag(x2)
lessc23_out_ag(x1, x2)  =  lessc23_out_ag(x1, x2)
U33_ag(x1, x2, x3)  =  U33_ag(x2, x3)
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
INSERT1_IN_AGA(x1, x2, x3)  =  INSERT1_IN_AGA(x2)
U14_AGA(x1, x2, x3, x4, x5, x6)  =  U14_AGA(x2, x3, x4, x6)
P46_IN_GAGA(x1, x2, x3, x4)  =  P46_IN_GAGA(x1, x3)
P53_IN_GAGA(x1, x2, x3, x4)  =  P53_IN_GAGA(x1, x3)
U9_GAGA(x1, x2, x3, x4, x5)  =  U9_GAGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(43) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(44) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_AGA(T86, tree(T78, T79, T80), tree(T78, T79, T87)) → U14_AGA(T86, T78, T79, T80, T87, lessc36_in_ga(T78, T86))
U14_AGA(T86, T78, T79, T80, T87, lessc36_out_ga(T78, T86)) → INSERT1_IN_AGA(T86, T80, T87)
INSERT1_IN_AGA(T116, tree(T112, T113, T114), tree(T112, T113, T117)) → P46_IN_GAGA(T112, T116, T114, T117)
P46_IN_GAGA(0, s(T124), T114, T123) → INSERT1_IN_AGA(s(T124), T114, T123)
INSERT1_IN_AGA(s(T212), tree(0, T201, T202), tree(0, T201, T211)) → INSERT1_IN_AGA(s(T212), T202, T211)
INSERT1_IN_AGA(s(T221), tree(s(T219), T201, T202), tree(s(T219), T201, T222)) → P53_IN_GAGA(T219, T221, T202, T222)
P53_IN_GAGA(T131, T137, T114, T138) → U9_GAGA(T131, T137, T114, T138, lessc36_in_ga(T131, T137))
U9_GAGA(T131, T137, T114, T138, lessc36_out_ga(T131, T137)) → INSERT1_IN_AGA(s(T137), T114, T138)
P46_IN_GAGA(s(T131), s(T133), T114, T134) → P53_IN_GAGA(T131, T133, T114, T134)

The TRS R consists of the following rules:

lessc36_in_ga(0, s(T94)) → lessc36_out_ga(0, s(T94))
lessc36_in_ga(s(T99), s(T101)) → U34_ga(T99, T101, lessc36_in_ga(T99, T101))
U34_ga(T99, T101, lessc36_out_ga(T99, T101)) → lessc36_out_ga(s(T99), s(T101))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
0  =  0
lessc36_in_ga(x1, x2)  =  lessc36_in_ga(x1)
lessc36_out_ga(x1, x2)  =  lessc36_out_ga(x1)
U34_ga(x1, x2, x3)  =  U34_ga(x1, x3)
INSERT1_IN_AGA(x1, x2, x3)  =  INSERT1_IN_AGA(x2)
U14_AGA(x1, x2, x3, x4, x5, x6)  =  U14_AGA(x2, x3, x4, x6)
P46_IN_GAGA(x1, x2, x3, x4)  =  P46_IN_GAGA(x1, x3)
P53_IN_GAGA(x1, x2, x3, x4)  =  P53_IN_GAGA(x1, x3)
U9_GAGA(x1, x2, x3, x4, x5)  =  U9_GAGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(45) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT1_IN_AGA(tree(T78, T79, T80)) → U14_AGA(T78, T79, T80, lessc36_in_ga(T78))
U14_AGA(T78, T79, T80, lessc36_out_ga(T78)) → INSERT1_IN_AGA(T80)
INSERT1_IN_AGA(tree(T112, T113, T114)) → P46_IN_GAGA(T112, T114)
P46_IN_GAGA(0, T114) → INSERT1_IN_AGA(T114)
INSERT1_IN_AGA(tree(0, T201, T202)) → INSERT1_IN_AGA(T202)
INSERT1_IN_AGA(tree(s(T219), T201, T202)) → P53_IN_GAGA(T219, T202)
P53_IN_GAGA(T131, T114) → U9_GAGA(T131, T114, lessc36_in_ga(T131))
U9_GAGA(T131, T114, lessc36_out_ga(T131)) → INSERT1_IN_AGA(T114)
P46_IN_GAGA(s(T131), T114) → P53_IN_GAGA(T131, T114)

The TRS R consists of the following rules:

lessc36_in_ga(0) → lessc36_out_ga(0)
lessc36_in_ga(s(T99)) → U34_ga(T99, lessc36_in_ga(T99))
U34_ga(T99, lessc36_out_ga(T99)) → lessc36_out_ga(s(T99))

The set Q consists of the following terms:

lessc36_in_ga(x0)
U34_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(47) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U14_AGA(T78, T79, T80, lessc36_out_ga(T78)) → INSERT1_IN_AGA(T80)
    The graph contains the following edges 3 >= 1

  • INSERT1_IN_AGA(tree(0, T201, T202)) → INSERT1_IN_AGA(T202)
    The graph contains the following edges 1 > 1

  • INSERT1_IN_AGA(tree(T78, T79, T80)) → U14_AGA(T78, T79, T80, lessc36_in_ga(T78))
    The graph contains the following edges 1 > 1, 1 > 2, 1 > 3

  • P46_IN_GAGA(0, T114) → INSERT1_IN_AGA(T114)
    The graph contains the following edges 2 >= 1

  • U9_GAGA(T131, T114, lessc36_out_ga(T131)) → INSERT1_IN_AGA(T114)
    The graph contains the following edges 2 >= 1

  • P46_IN_GAGA(s(T131), T114) → P53_IN_GAGA(T131, T114)
    The graph contains the following edges 1 > 1, 2 >= 2

  • P53_IN_GAGA(T131, T114) → U9_GAGA(T131, T114, lessc36_in_ga(T131))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • INSERT1_IN_AGA(tree(T112, T113, T114)) → P46_IN_GAGA(T112, T114)
    The graph contains the following edges 1 > 1, 1 > 2

  • INSERT1_IN_AGA(tree(s(T219), T201, T202)) → P53_IN_GAGA(T219, T202)
    The graph contains the following edges 1 > 1, 1 > 2

(48) YES