(0) Obligation:

Clauses:

insert(X, void, tree(X, void, void)).
insert(X, tree(X, Left, Right), tree(X, Left, Right)).
insert(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), insert(X, Left, Left1)).
insert(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), insert(X, Right, Right1)).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

insert(g,g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

less20(s(T33)) :- less20(T33).
p18(T28, T20, T23) :- less20(T28).
p18(T28, T20, T23) :- ','(lessc20(T28), insert1(s(T28), T20, T23)).
less106(s(T201), s(T202)) :- less106(T201, T202).
insert1(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) :- p18(T28, T20, T23).
insert1(T45, tree(T45, T46, T47), tree(T45, T46, T49)) :- less20(T45).
insert1(T45, tree(T45, T46, T47), tree(T45, T46, T49)) :- ','(lessc20(T45), insert1(T45, T47, T49)).
insert1(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) :- p18(T65, T60, T62).
insert1(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) :- insert1(0, T74, T77).
insert1(s(s(s(s(s(s(s(s(T184)))))))), tree(s(s(s(s(s(s(s(s(T185)))))))), T74, T75), tree(s(s(s(s(s(s(s(s(T185)))))))), T77, T75)) :- less106(T184, T185).
insert1(s(T91), tree(s(T92), T74, T75), tree(s(T92), T77, T75)) :- ','(lessc48(T91, T92), insert1(s(T91), T74, T77)).
insert1(T217, tree(T218, T219, T220), tree(T218, T219, T222)) :- less106(T218, T217).
insert1(T217, tree(T218, T219, T220), tree(T218, T219, T222)) :- ','(lessc106(T218, T217), insert1(T217, T220, T222)).
insert1(s(T244), tree(0, T236, T237), tree(0, T236, T239)) :- insert1(s(T244), T237, T239).
insert1(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) :- less106(T251, T252).
insert1(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) :- ','(lessc106(T251, T252), insert1(s(T252), T237, T239)).

Clauses:

insertc1(T5, void, tree(T5, void, void)).
insertc1(T12, tree(T12, T13, T14), tree(T12, T13, T14)).
insertc1(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) :- qc18(T28, T20, T23).
insertc1(T45, tree(T45, T46, T47), tree(T45, T46, T49)) :- ','(lessc20(T45), insertc1(T45, T47, T49)).
insertc1(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) :- qc18(T65, T60, T62).
insertc1(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) :- insertc1(0, T74, T77).
insertc1(s(T91), tree(s(T92), T74, T75), tree(s(T92), T77, T75)) :- ','(lessc48(T91, T92), insertc1(s(T91), T74, T77)).
insertc1(T217, tree(T218, T219, T220), tree(T218, T219, T222)) :- ','(lessc106(T218, T217), insertc1(T217, T220, T222)).
insertc1(s(T244), tree(0, T236, T237), tree(0, T236, T239)) :- insertc1(s(T244), T237, T239).
insertc1(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) :- ','(lessc106(T251, T252), insertc1(s(T252), T237, T239)).
lessc20(s(T33)) :- lessc20(T33).
qc18(T28, T20, T23) :- ','(lessc20(T28), insertc1(s(T28), T20, T23)).
lessc106(0, s(T196)).
lessc106(s(T201), s(T202)) :- lessc106(T201, T202).
lessc48(0, s(T101)).
lessc48(s(0), s(s(T114))).
lessc48(s(s(0)), s(s(s(T127)))).
lessc48(s(s(s(0))), s(s(s(s(T140))))).
lessc48(s(s(s(s(0)))), s(s(s(s(s(T153)))))).
lessc48(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))).
lessc48(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))).
lessc48(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) :- lessc106(T184, T185).

Afs:

insert1(x1, x2, x3)  =  insert1(x1, x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
insert1_in: (b,b,f)
p18_in: (b,b,f)
less20_in: (b)
lessc20_in: (b)
less106_in: (b,b)
lessc48_in: (b,b)
lessc106_in: (b,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) → U6_GGA(T28, T20, T21, T23, p18_in_gga(T28, T20, T23))
INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) → P18_IN_GGA(T28, T20, T23)
P18_IN_GGA(T28, T20, T23) → U2_GGA(T28, T20, T23, less20_in_g(T28))
P18_IN_GGA(T28, T20, T23) → LESS20_IN_G(T28)
LESS20_IN_G(s(T33)) → U1_G(T33, less20_in_g(T33))
LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)
P18_IN_GGA(T28, T20, T23) → U3_GGA(T28, T20, T23, lessc20_in_g(T28))
U3_GGA(T28, T20, T23, lessc20_out_g(T28)) → U4_GGA(T28, T20, T23, insert1_in_gga(s(T28), T20, T23))
U3_GGA(T28, T20, T23, lessc20_out_g(T28)) → INSERT1_IN_GGA(s(T28), T20, T23)
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → U7_GGA(T45, T46, T47, T49, less20_in_g(T45))
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → LESS20_IN_G(T45)
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → U8_GGA(T45, T46, T47, T49, lessc20_in_g(T45))
U8_GGA(T45, T46, T47, T49, lessc20_out_g(T45)) → U9_GGA(T45, T46, T47, T49, insert1_in_gga(T45, T47, T49))
U8_GGA(T45, T46, T47, T49, lessc20_out_g(T45)) → INSERT1_IN_GGA(T45, T47, T49)
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) → U10_GGA(T65, T59, T60, T62, p18_in_gga(T65, T60, T62))
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) → P18_IN_GGA(T65, T60, T62)
INSERT1_IN_GGA(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) → U11_GGA(T82, T74, T75, T77, insert1_in_gga(0, T74, T77))
INSERT1_IN_GGA(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) → INSERT1_IN_GGA(0, T74, T77)
INSERT1_IN_GGA(s(s(s(s(s(s(s(s(T184)))))))), tree(s(s(s(s(s(s(s(s(T185)))))))), T74, T75), tree(s(s(s(s(s(s(s(s(T185)))))))), T77, T75)) → U12_GGA(T184, T185, T74, T75, T77, less106_in_gg(T184, T185))
INSERT1_IN_GGA(s(s(s(s(s(s(s(s(T184)))))))), tree(s(s(s(s(s(s(s(s(T185)))))))), T74, T75), tree(s(s(s(s(s(s(s(s(T185)))))))), T77, T75)) → LESS106_IN_GG(T184, T185)
LESS106_IN_GG(s(T201), s(T202)) → U5_GG(T201, T202, less106_in_gg(T201, T202))
LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)
INSERT1_IN_GGA(s(T91), tree(s(T92), T74, T75), tree(s(T92), T77, T75)) → U13_GGA(T91, T92, T74, T75, T77, lessc48_in_gg(T91, T92))
U13_GGA(T91, T92, T74, T75, T77, lessc48_out_gg(T91, T92)) → U14_GGA(T91, T92, T74, T75, T77, insert1_in_gga(s(T91), T74, T77))
U13_GGA(T91, T92, T74, T75, T77, lessc48_out_gg(T91, T92)) → INSERT1_IN_GGA(s(T91), T74, T77)
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → U15_GGA(T217, T218, T219, T220, T222, less106_in_gg(T218, T217))
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → LESS106_IN_GG(T218, T217)
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → U16_GGA(T217, T218, T219, T220, T222, lessc106_in_gg(T218, T217))
U16_GGA(T217, T218, T219, T220, T222, lessc106_out_gg(T218, T217)) → U17_GGA(T217, T218, T219, T220, T222, insert1_in_gga(T217, T220, T222))
U16_GGA(T217, T218, T219, T220, T222, lessc106_out_gg(T218, T217)) → INSERT1_IN_GGA(T217, T220, T222)
INSERT1_IN_GGA(s(T244), tree(0, T236, T237), tree(0, T236, T239)) → U18_GGA(T244, T236, T237, T239, insert1_in_gga(s(T244), T237, T239))
INSERT1_IN_GGA(s(T244), tree(0, T236, T237), tree(0, T236, T239)) → INSERT1_IN_GGA(s(T244), T237, T239)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → U19_GGA(T252, T251, T236, T237, T239, less106_in_gg(T251, T252))
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → LESS106_IN_GG(T251, T252)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → U20_GGA(T252, T251, T236, T237, T239, lessc106_in_gg(T251, T252))
U20_GGA(T252, T251, T236, T237, T239, lessc106_out_gg(T251, T252)) → U21_GGA(T252, T251, T236, T237, T239, insert1_in_gga(s(T252), T237, T239))
U20_GGA(T252, T251, T236, T237, T239, lessc106_out_gg(T251, T252)) → INSERT1_IN_GGA(s(T252), T237, T239)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

The argument filtering Pi contains the following mapping:
insert1_in_gga(x1, x2, x3)  =  insert1_in_gga(x1, x2)
s(x1)  =  s(x1)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
p18_in_gga(x1, x2, x3)  =  p18_in_gga(x1, x2)
less20_in_g(x1)  =  less20_in_g(x1)
lessc20_in_g(x1)  =  lessc20_in_g(x1)
U35_g(x1, x2)  =  U35_g(x1, x2)
lessc20_out_g(x1)  =  lessc20_out_g(x1)
0  =  0
less106_in_gg(x1, x2)  =  less106_in_gg(x1, x2)
lessc48_in_gg(x1, x2)  =  lessc48_in_gg(x1, x2)
lessc48_out_gg(x1, x2)  =  lessc48_out_gg(x1, x2)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
lessc106_in_gg(x1, x2)  =  lessc106_in_gg(x1, x2)
lessc106_out_gg(x1, x2)  =  lessc106_out_gg(x1, x2)
U38_gg(x1, x2, x3)  =  U38_gg(x1, x2, x3)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4, x5)  =  U6_GGA(x1, x2, x3, x5)
P18_IN_GGA(x1, x2, x3)  =  P18_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
LESS20_IN_G(x1)  =  LESS20_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4, x5)  =  U7_GGA(x1, x2, x3, x5)
U8_GGA(x1, x2, x3, x4, x5)  =  U8_GGA(x1, x2, x3, x5)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
U11_GGA(x1, x2, x3, x4, x5)  =  U11_GGA(x1, x2, x3, x5)
U12_GGA(x1, x2, x3, x4, x5, x6)  =  U12_GGA(x1, x2, x3, x4, x6)
LESS106_IN_GG(x1, x2)  =  LESS106_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x1, x2, x3)
U13_GGA(x1, x2, x3, x4, x5, x6)  =  U13_GGA(x1, x2, x3, x4, x6)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
U15_GGA(x1, x2, x3, x4, x5, x6)  =  U15_GGA(x1, x2, x3, x4, x6)
U16_GGA(x1, x2, x3, x4, x5, x6)  =  U16_GGA(x1, x2, x3, x4, x6)
U17_GGA(x1, x2, x3, x4, x5, x6)  =  U17_GGA(x1, x2, x3, x4, x6)
U18_GGA(x1, x2, x3, x4, x5)  =  U18_GGA(x1, x2, x3, x5)
U19_GGA(x1, x2, x3, x4, x5, x6)  =  U19_GGA(x1, x2, x3, x4, x6)
U20_GGA(x1, x2, x3, x4, x5, x6)  =  U20_GGA(x1, x2, x3, x4, x6)
U21_GGA(x1, x2, x3, x4, x5, x6)  =  U21_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) → U6_GGA(T28, T20, T21, T23, p18_in_gga(T28, T20, T23))
INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) → P18_IN_GGA(T28, T20, T23)
P18_IN_GGA(T28, T20, T23) → U2_GGA(T28, T20, T23, less20_in_g(T28))
P18_IN_GGA(T28, T20, T23) → LESS20_IN_G(T28)
LESS20_IN_G(s(T33)) → U1_G(T33, less20_in_g(T33))
LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)
P18_IN_GGA(T28, T20, T23) → U3_GGA(T28, T20, T23, lessc20_in_g(T28))
U3_GGA(T28, T20, T23, lessc20_out_g(T28)) → U4_GGA(T28, T20, T23, insert1_in_gga(s(T28), T20, T23))
U3_GGA(T28, T20, T23, lessc20_out_g(T28)) → INSERT1_IN_GGA(s(T28), T20, T23)
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → U7_GGA(T45, T46, T47, T49, less20_in_g(T45))
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → LESS20_IN_G(T45)
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → U8_GGA(T45, T46, T47, T49, lessc20_in_g(T45))
U8_GGA(T45, T46, T47, T49, lessc20_out_g(T45)) → U9_GGA(T45, T46, T47, T49, insert1_in_gga(T45, T47, T49))
U8_GGA(T45, T46, T47, T49, lessc20_out_g(T45)) → INSERT1_IN_GGA(T45, T47, T49)
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) → U10_GGA(T65, T59, T60, T62, p18_in_gga(T65, T60, T62))
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) → P18_IN_GGA(T65, T60, T62)
INSERT1_IN_GGA(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) → U11_GGA(T82, T74, T75, T77, insert1_in_gga(0, T74, T77))
INSERT1_IN_GGA(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) → INSERT1_IN_GGA(0, T74, T77)
INSERT1_IN_GGA(s(s(s(s(s(s(s(s(T184)))))))), tree(s(s(s(s(s(s(s(s(T185)))))))), T74, T75), tree(s(s(s(s(s(s(s(s(T185)))))))), T77, T75)) → U12_GGA(T184, T185, T74, T75, T77, less106_in_gg(T184, T185))
INSERT1_IN_GGA(s(s(s(s(s(s(s(s(T184)))))))), tree(s(s(s(s(s(s(s(s(T185)))))))), T74, T75), tree(s(s(s(s(s(s(s(s(T185)))))))), T77, T75)) → LESS106_IN_GG(T184, T185)
LESS106_IN_GG(s(T201), s(T202)) → U5_GG(T201, T202, less106_in_gg(T201, T202))
LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)
INSERT1_IN_GGA(s(T91), tree(s(T92), T74, T75), tree(s(T92), T77, T75)) → U13_GGA(T91, T92, T74, T75, T77, lessc48_in_gg(T91, T92))
U13_GGA(T91, T92, T74, T75, T77, lessc48_out_gg(T91, T92)) → U14_GGA(T91, T92, T74, T75, T77, insert1_in_gga(s(T91), T74, T77))
U13_GGA(T91, T92, T74, T75, T77, lessc48_out_gg(T91, T92)) → INSERT1_IN_GGA(s(T91), T74, T77)
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → U15_GGA(T217, T218, T219, T220, T222, less106_in_gg(T218, T217))
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → LESS106_IN_GG(T218, T217)
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → U16_GGA(T217, T218, T219, T220, T222, lessc106_in_gg(T218, T217))
U16_GGA(T217, T218, T219, T220, T222, lessc106_out_gg(T218, T217)) → U17_GGA(T217, T218, T219, T220, T222, insert1_in_gga(T217, T220, T222))
U16_GGA(T217, T218, T219, T220, T222, lessc106_out_gg(T218, T217)) → INSERT1_IN_GGA(T217, T220, T222)
INSERT1_IN_GGA(s(T244), tree(0, T236, T237), tree(0, T236, T239)) → U18_GGA(T244, T236, T237, T239, insert1_in_gga(s(T244), T237, T239))
INSERT1_IN_GGA(s(T244), tree(0, T236, T237), tree(0, T236, T239)) → INSERT1_IN_GGA(s(T244), T237, T239)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → U19_GGA(T252, T251, T236, T237, T239, less106_in_gg(T251, T252))
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → LESS106_IN_GG(T251, T252)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → U20_GGA(T252, T251, T236, T237, T239, lessc106_in_gg(T251, T252))
U20_GGA(T252, T251, T236, T237, T239, lessc106_out_gg(T251, T252)) → U21_GGA(T252, T251, T236, T237, T239, insert1_in_gga(s(T252), T237, T239))
U20_GGA(T252, T251, T236, T237, T239, lessc106_out_gg(T251, T252)) → INSERT1_IN_GGA(s(T252), T237, T239)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

The argument filtering Pi contains the following mapping:
insert1_in_gga(x1, x2, x3)  =  insert1_in_gga(x1, x2)
s(x1)  =  s(x1)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
p18_in_gga(x1, x2, x3)  =  p18_in_gga(x1, x2)
less20_in_g(x1)  =  less20_in_g(x1)
lessc20_in_g(x1)  =  lessc20_in_g(x1)
U35_g(x1, x2)  =  U35_g(x1, x2)
lessc20_out_g(x1)  =  lessc20_out_g(x1)
0  =  0
less106_in_gg(x1, x2)  =  less106_in_gg(x1, x2)
lessc48_in_gg(x1, x2)  =  lessc48_in_gg(x1, x2)
lessc48_out_gg(x1, x2)  =  lessc48_out_gg(x1, x2)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
lessc106_in_gg(x1, x2)  =  lessc106_in_gg(x1, x2)
lessc106_out_gg(x1, x2)  =  lessc106_out_gg(x1, x2)
U38_gg(x1, x2, x3)  =  U38_gg(x1, x2, x3)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
U6_GGA(x1, x2, x3, x4, x5)  =  U6_GGA(x1, x2, x3, x5)
P18_IN_GGA(x1, x2, x3)  =  P18_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x2, x4)
LESS20_IN_G(x1)  =  LESS20_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U4_GGA(x1, x2, x3, x4)  =  U4_GGA(x1, x2, x4)
U7_GGA(x1, x2, x3, x4, x5)  =  U7_GGA(x1, x2, x3, x5)
U8_GGA(x1, x2, x3, x4, x5)  =  U8_GGA(x1, x2, x3, x5)
U9_GGA(x1, x2, x3, x4, x5)  =  U9_GGA(x1, x2, x3, x5)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
U11_GGA(x1, x2, x3, x4, x5)  =  U11_GGA(x1, x2, x3, x5)
U12_GGA(x1, x2, x3, x4, x5, x6)  =  U12_GGA(x1, x2, x3, x4, x6)
LESS106_IN_GG(x1, x2)  =  LESS106_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x1, x2, x3)
U13_GGA(x1, x2, x3, x4, x5, x6)  =  U13_GGA(x1, x2, x3, x4, x6)
U14_GGA(x1, x2, x3, x4, x5, x6)  =  U14_GGA(x1, x2, x3, x4, x6)
U15_GGA(x1, x2, x3, x4, x5, x6)  =  U15_GGA(x1, x2, x3, x4, x6)
U16_GGA(x1, x2, x3, x4, x5, x6)  =  U16_GGA(x1, x2, x3, x4, x6)
U17_GGA(x1, x2, x3, x4, x5, x6)  =  U17_GGA(x1, x2, x3, x4, x6)
U18_GGA(x1, x2, x3, x4, x5)  =  U18_GGA(x1, x2, x3, x5)
U19_GGA(x1, x2, x3, x4, x5, x6)  =  U19_GGA(x1, x2, x3, x4, x6)
U20_GGA(x1, x2, x3, x4, x5, x6)  =  U20_GGA(x1, x2, x3, x4, x6)
U21_GGA(x1, x2, x3, x4, x5, x6)  =  U21_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 21 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS106_IN_GG(s(T201), s(T202)) → LESS106_IN_GG(T201, T202)
    The graph contains the following edges 1 > 1, 2 > 2

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS20_IN_G(s(T33)) → LESS20_IN_G(T33)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21), tree(s(T28), T23, T21)) → P18_IN_GGA(T28, T20, T23)
P18_IN_GGA(T28, T20, T23) → U3_GGA(T28, T20, T23, lessc20_in_g(T28))
U3_GGA(T28, T20, T23, lessc20_out_g(T28)) → INSERT1_IN_GGA(s(T28), T20, T23)
INSERT1_IN_GGA(T45, tree(T45, T46, T47), tree(T45, T46, T49)) → U8_GGA(T45, T46, T47, T49, lessc20_in_g(T45))
U8_GGA(T45, T46, T47, T49, lessc20_out_g(T45)) → INSERT1_IN_GGA(T45, T47, T49)
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60), tree(s(T65), T59, T62)) → P18_IN_GGA(T65, T60, T62)
INSERT1_IN_GGA(0, tree(s(T82), T74, T75), tree(s(T82), T77, T75)) → INSERT1_IN_GGA(0, T74, T77)
INSERT1_IN_GGA(T217, tree(T218, T219, T220), tree(T218, T219, T222)) → U16_GGA(T217, T218, T219, T220, T222, lessc106_in_gg(T218, T217))
U16_GGA(T217, T218, T219, T220, T222, lessc106_out_gg(T218, T217)) → INSERT1_IN_GGA(T217, T220, T222)
INSERT1_IN_GGA(s(T91), tree(s(T92), T74, T75), tree(s(T92), T77, T75)) → U13_GGA(T91, T92, T74, T75, T77, lessc48_in_gg(T91, T92))
U13_GGA(T91, T92, T74, T75, T77, lessc48_out_gg(T91, T92)) → INSERT1_IN_GGA(s(T91), T74, T77)
INSERT1_IN_GGA(s(T244), tree(0, T236, T237), tree(0, T236, T239)) → INSERT1_IN_GGA(s(T244), T237, T239)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237), tree(s(T251), T236, T239)) → U20_GGA(T252, T251, T236, T237, T239, lessc106_in_gg(T251, T252))
U20_GGA(T252, T251, T236, T237, T239, lessc106_out_gg(T251, T252)) → INSERT1_IN_GGA(s(T252), T237, T239)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
lessc20_in_g(x1)  =  lessc20_in_g(x1)
U35_g(x1, x2)  =  U35_g(x1, x2)
lessc20_out_g(x1)  =  lessc20_out_g(x1)
0  =  0
lessc48_in_gg(x1, x2)  =  lessc48_in_gg(x1, x2)
lessc48_out_gg(x1, x2)  =  lessc48_out_gg(x1, x2)
U39_gg(x1, x2, x3)  =  U39_gg(x1, x2, x3)
lessc106_in_gg(x1, x2)  =  lessc106_in_gg(x1, x2)
lessc106_out_gg(x1, x2)  =  lessc106_out_gg(x1, x2)
U38_gg(x1, x2, x3)  =  U38_gg(x1, x2, x3)
INSERT1_IN_GGA(x1, x2, x3)  =  INSERT1_IN_GGA(x1, x2)
P18_IN_GGA(x1, x2, x3)  =  P18_IN_GGA(x1, x2)
U3_GGA(x1, x2, x3, x4)  =  U3_GGA(x1, x2, x4)
U8_GGA(x1, x2, x3, x4, x5)  =  U8_GGA(x1, x2, x3, x5)
U13_GGA(x1, x2, x3, x4, x5, x6)  =  U13_GGA(x1, x2, x3, x4, x6)
U16_GGA(x1, x2, x3, x4, x5, x6)  =  U16_GGA(x1, x2, x3, x4, x6)
U20_GGA(x1, x2, x3, x4, x5, x6)  =  U20_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(22) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21)) → P18_IN_GGA(T28, T20)
P18_IN_GGA(T28, T20) → U3_GGA(T28, T20, lessc20_in_g(T28))
U3_GGA(T28, T20, lessc20_out_g(T28)) → INSERT1_IN_GGA(s(T28), T20)
INSERT1_IN_GGA(T45, tree(T45, T46, T47)) → U8_GGA(T45, T46, T47, lessc20_in_g(T45))
U8_GGA(T45, T46, T47, lessc20_out_g(T45)) → INSERT1_IN_GGA(T45, T47)
INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60)) → P18_IN_GGA(T65, T60)
INSERT1_IN_GGA(0, tree(s(T82), T74, T75)) → INSERT1_IN_GGA(0, T74)
INSERT1_IN_GGA(T217, tree(T218, T219, T220)) → U16_GGA(T217, T218, T219, T220, lessc106_in_gg(T218, T217))
U16_GGA(T217, T218, T219, T220, lessc106_out_gg(T218, T217)) → INSERT1_IN_GGA(T217, T220)
INSERT1_IN_GGA(s(T91), tree(s(T92), T74, T75)) → U13_GGA(T91, T92, T74, T75, lessc48_in_gg(T91, T92))
U13_GGA(T91, T92, T74, T75, lessc48_out_gg(T91, T92)) → INSERT1_IN_GGA(s(T91), T74)
INSERT1_IN_GGA(s(T244), tree(0, T236, T237)) → INSERT1_IN_GGA(s(T244), T237)
INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237)) → U20_GGA(T252, T251, T236, T237, lessc106_in_gg(T251, T252))
U20_GGA(T252, T251, T236, T237, lessc106_out_gg(T251, T252)) → INSERT1_IN_GGA(s(T252), T237)

The TRS R consists of the following rules:

lessc20_in_g(s(T33)) → U35_g(T33, lessc20_in_g(T33))
U35_g(T33, lessc20_out_g(T33)) → lessc20_out_g(s(T33))
lessc48_in_gg(0, s(T101)) → lessc48_out_gg(0, s(T101))
lessc48_in_gg(s(0), s(s(T114))) → lessc48_out_gg(s(0), s(s(T114)))
lessc48_in_gg(s(s(0)), s(s(s(T127)))) → lessc48_out_gg(s(s(0)), s(s(s(T127))))
lessc48_in_gg(s(s(s(0))), s(s(s(s(T140))))) → lessc48_out_gg(s(s(s(0))), s(s(s(s(T140)))))
lessc48_in_gg(s(s(s(s(0)))), s(s(s(s(s(T153)))))) → lessc48_out_gg(s(s(s(s(0)))), s(s(s(s(s(T153))))))
lessc48_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166))))))) → lessc48_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T166)))))))
lessc48_in_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179)))))))) → lessc48_out_gg(s(s(s(s(s(s(0)))))), s(s(s(s(s(s(s(T179))))))))
lessc48_in_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185)))))))) → U39_gg(T184, T185, lessc106_in_gg(T184, T185))
lessc106_in_gg(0, s(T196)) → lessc106_out_gg(0, s(T196))
lessc106_in_gg(s(T201), s(T202)) → U38_gg(T201, T202, lessc106_in_gg(T201, T202))
U38_gg(T201, T202, lessc106_out_gg(T201, T202)) → lessc106_out_gg(s(T201), s(T202))
U39_gg(T184, T185, lessc106_out_gg(T184, T185)) → lessc48_out_gg(s(s(s(s(s(s(s(T184))))))), s(s(s(s(s(s(s(T185))))))))

The set Q consists of the following terms:

lessc20_in_g(x0)
U35_g(x0, x1)
lessc48_in_gg(x0, x1)
lessc106_in_gg(x0, x1)
U38_gg(x0, x1, x2)
U39_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(24) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P18_IN_GGA(T28, T20) → U3_GGA(T28, T20, lessc20_in_g(T28))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U3_GGA(T28, T20, lessc20_out_g(T28)) → INSERT1_IN_GGA(s(T28), T20)
    The graph contains the following edges 2 >= 2

  • INSERT1_IN_GGA(s(T244), tree(0, T236, T237)) → INSERT1_IN_GGA(s(T244), T237)
    The graph contains the following edges 1 >= 1, 2 > 2

  • INSERT1_IN_GGA(0, tree(s(T82), T74, T75)) → INSERT1_IN_GGA(0, T74)
    The graph contains the following edges 1 >= 1, 2 > 2

  • U8_GGA(T45, T46, T47, lessc20_out_g(T45)) → INSERT1_IN_GGA(T45, T47)
    The graph contains the following edges 1 >= 1, 4 > 1, 3 >= 2

  • INSERT1_IN_GGA(T45, tree(T45, T46, T47)) → U8_GGA(T45, T46, T47, lessc20_in_g(T45))
    The graph contains the following edges 1 >= 1, 2 > 1, 2 > 2, 2 > 3

  • U16_GGA(T217, T218, T219, T220, lessc106_out_gg(T218, T217)) → INSERT1_IN_GGA(T217, T220)
    The graph contains the following edges 1 >= 1, 5 > 1, 4 >= 2

  • INSERT1_IN_GGA(T217, tree(T218, T219, T220)) → U16_GGA(T217, T218, T219, T220, lessc106_in_gg(T218, T217))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4

  • U13_GGA(T91, T92, T74, T75, lessc48_out_gg(T91, T92)) → INSERT1_IN_GGA(s(T91), T74)
    The graph contains the following edges 3 >= 2

  • U20_GGA(T252, T251, T236, T237, lessc106_out_gg(T251, T252)) → INSERT1_IN_GGA(s(T252), T237)
    The graph contains the following edges 4 >= 2

  • INSERT1_IN_GGA(s(T91), tree(s(T92), T74, T75)) → U13_GGA(T91, T92, T74, T75, lessc48_in_gg(T91, T92))
    The graph contains the following edges 1 > 1, 2 > 2, 2 > 3, 2 > 4

  • INSERT1_IN_GGA(s(T252), tree(s(T251), T236, T237)) → U20_GGA(T252, T251, T236, T237, lessc106_in_gg(T251, T252))
    The graph contains the following edges 1 > 1, 2 > 2, 2 > 3, 2 > 4

  • INSERT1_IN_GGA(s(T28), tree(s(T28), T20, T21)) → P18_IN_GGA(T28, T20)
    The graph contains the following edges 1 > 1, 2 > 1, 2 > 2

  • INSERT1_IN_GGA(s(T65), tree(s(T65), T59, T60)) → P18_IN_GGA(T65, T60)
    The graph contains the following edges 1 > 1, 2 > 1, 2 > 2

(25) YES