(0) Obligation:

Clauses:

insert(X, void, tree(X, void, void)).
insert(X, tree(X, Left, Right), tree(X, Left, Right)).
insert(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), insert(X, Left, Left1)).
insert(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), insert(X, Right, Right1)).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

insert(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
insert_in: (b,b,f)
less_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_GGA(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN_GG(Y, X)
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_GGA(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x2, x3, x6)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_GGA(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN_GG(Y, X)
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_GGA(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x2, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x2, x3, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x2, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x2, x3, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg
U5_gg(x1, x2, x3)  =  U5_gg(x3)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, less_out_gg) → INSERT_IN_GGA(X, Left)
INSERT_IN_GGA(X, tree(Y, Left, Right)) → U1_GGA(X, Y, Left, Right, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right)) → U3_GGA(X, Y, Left, Right, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, less_out_gg) → INSERT_IN_GGA(X, Right)

The TRS R consists of the following rules:

less_in_gg(0, s(X1)) → less_out_gg
less_in_gg(s(X), s(Y)) → U5_gg(less_in_gg(X, Y))
U5_gg(less_out_gg) → less_out_gg

The set Q consists of the following terms:

less_in_gg(x0, x1)
U5_gg(x0)

We have to consider all (P,Q,R)-chains.

(19) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
insert_in: (b,b,f)
less_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(20) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)

(21) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_GGA(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN_GG(Y, X)
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_GGA(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x1, x2, x3)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(22) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → LESS_IN_GG(X, Y)
LESS_IN_GG(s(X), s(Y)) → U5_GG(X, Y, less_in_gg(X, Y))
LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_GGA(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → LESS_IN_GG(Y, X)
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_GGA(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)
U5_GG(x1, x2, x3)  =  U5_GG(x1, x2, x3)
U2_GGA(x1, x2, x3, x4, x5, x6)  =  U2_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)
U4_GGA(x1, x2, x3, x4, x5, x6)  =  U4_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 5 less nodes.

(24) Complex Obligation (AND)

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)
LESS_IN_GG(x1, x2)  =  LESS_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(26) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(28) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(30) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS_IN_GG(s(X), s(Y)) → LESS_IN_GG(X, Y)
    The graph contains the following edges 1 > 1, 2 > 2

(31) TRUE

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

insert_in_gga(X, void, tree(X, void, void)) → insert_out_gga(X, void, tree(X, void, void))
insert_in_gga(X, tree(X, Left, Right), tree(X, Left, Right)) → insert_out_gga(X, tree(X, Left, Right), tree(X, Left, Right))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_gga(X, Y, Left, Right, Left1, less_in_gg(X, Y))
less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))
U1_gga(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → U2_gga(X, Y, Left, Right, Left1, insert_in_gga(X, Left, Left1))
insert_in_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_gga(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_gga(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → U4_gga(X, Y, Left, Right, Right1, insert_in_gga(X, Right, Right1))
U4_gga(X, Y, Left, Right, Right1, insert_out_gga(X, Right, Right1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left, Right1))
U2_gga(X, Y, Left, Right, Left1, insert_out_gga(X, Left, Left1)) → insert_out_gga(X, tree(Y, Left, Right), tree(Y, Left1, Right))

The argument filtering Pi contains the following mapping:
insert_in_gga(x1, x2, x3)  =  insert_in_gga(x1, x2)
void  =  void
insert_out_gga(x1, x2, x3)  =  insert_out_gga(x1, x2, x3)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
U1_gga(x1, x2, x3, x4, x5, x6)  =  U1_gga(x1, x2, x3, x4, x6)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
U2_gga(x1, x2, x3, x4, x5, x6)  =  U2_gga(x1, x2, x3, x4, x6)
U3_gga(x1, x2, x3, x4, x5, x6)  =  U3_gga(x1, x2, x3, x4, x6)
U4_gga(x1, x2, x3, x4, x5, x6)  =  U4_gga(x1, x2, x3, x4, x6)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(33) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, Left1, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left, Left1)
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left1, Right)) → U1_GGA(X, Y, Left, Right, Left1, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right), tree(Y, Left, Right1)) → U3_GGA(X, Y, Left, Right, Right1, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, Right1, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right, Right1)

The TRS R consists of the following rules:

less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
less_in_gg(x1, x2)  =  less_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
less_out_gg(x1, x2)  =  less_out_gg(x1, x2)
U5_gg(x1, x2, x3)  =  U5_gg(x1, x2, x3)
INSERT_IN_GGA(x1, x2, x3)  =  INSERT_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5, x6)  =  U1_GGA(x1, x2, x3, x4, x6)
U3_GGA(x1, x2, x3, x4, x5, x6)  =  U3_GGA(x1, x2, x3, x4, x6)

We have to consider all (P,R,Pi)-chains

(35) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(X, Y, Left, Right, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left)
INSERT_IN_GGA(X, tree(Y, Left, Right)) → U1_GGA(X, Y, Left, Right, less_in_gg(X, Y))
INSERT_IN_GGA(X, tree(Y, Left, Right)) → U3_GGA(X, Y, Left, Right, less_in_gg(Y, X))
U3_GGA(X, Y, Left, Right, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right)

The TRS R consists of the following rules:

less_in_gg(0, s(X1)) → less_out_gg(0, s(X1))
less_in_gg(s(X), s(Y)) → U5_gg(X, Y, less_in_gg(X, Y))
U5_gg(X, Y, less_out_gg(X, Y)) → less_out_gg(s(X), s(Y))

The set Q consists of the following terms:

less_in_gg(x0, x1)
U5_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(37) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • INSERT_IN_GGA(X, tree(Y, Left, Right)) → U1_GGA(X, Y, Left, Right, less_in_gg(X, Y))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4

  • INSERT_IN_GGA(X, tree(Y, Left, Right)) → U3_GGA(X, Y, Left, Right, less_in_gg(Y, X))
    The graph contains the following edges 1 >= 1, 2 > 2, 2 > 3, 2 > 4

  • U1_GGA(X, Y, Left, Right, less_out_gg(X, Y)) → INSERT_IN_GGA(X, Left)
    The graph contains the following edges 1 >= 1, 5 > 1, 3 >= 2

  • U3_GGA(X, Y, Left, Right, less_out_gg(Y, X)) → INSERT_IN_GGA(X, Right)
    The graph contains the following edges 1 >= 1, 5 > 1, 4 >= 2

(38) TRUE