(0) Obligation:

Clauses:

in_order(void, []).
in_order(tree(X, Left, Right), Xs) :- ','(in_order(Left, Ls), ','(in_order(Right, Rs), app(Ls, .(X, Rs), Xs))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).

Queries:

in_order(a,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

in_order13(tree(T27, T25, T26), X33) :- in_order13(T25, X31).
in_order13(tree(T30, T25, T29), X33) :- ','(in_orderc13(T25, T28), in_order13(T29, X32)).
in_order13(tree(T33, T25, T29), X33) :- ','(in_orderc13(T25, T32), ','(in_orderc13(T29, T31), app26(T32, T33, T31, X33))).
app26(.(T56, T60), T61, T62, .(T56, X60)) :- app26(T60, T61, T62, X60).
app83(.(T253, T258), T259, T260, .(T253, T257)) :- app83(T258, T259, T260, T257).
in_order1(tree(T13, void, T12), []) :- in_order13(T12, X10).
in_order1(tree(T86, tree(T84, T82, T83), T85), []) :- in_order13(T82, X94).
in_order1(tree(T91, tree(T89, T82, T88), T90), []) :- ','(in_orderc13(T82, T87), in_order13(T88, X95)).
in_order1(tree(T96, tree(T94, T82, T88), T95), []) :- ','(in_orderc13(T82, T93), ','(in_orderc13(T88, T92), app26(T93, T94, T92, X96))).
in_order1(tree(T103, tree(T94, T82, T88), T102), []) :- ','(in_orderc13(T82, T93), ','(in_orderc13(T88, T92), ','(appc26(T93, T94, T92, T101), in_order13(T102, X10)))).
in_order1(tree(T137, void, T136), T132) :- in_order13(T136, X125).
in_order1(tree(T168, tree(T166, T164, T165), T167), T132) :- in_order13(T164, X158).
in_order1(tree(T173, tree(T171, T164, T170), T172), T132) :- ','(in_orderc13(T164, T169), in_order13(T170, X159)).
in_order1(tree(T179, tree(T177, T164, T170), T178), T132) :- ','(in_orderc13(T164, T176), ','(in_orderc13(T170, T175), app26(T176, T177, T175, X160))).
in_order1(tree(T187, tree(T177, T164, T170), T186), T132) :- ','(in_orderc13(T164, T176), ','(in_orderc13(T170, T175), ','(appc26(T176, T177, T175, T185), in_order13(T186, X125)))).
in_order1(tree(T227, tree(T177, T164, T170), T186), .(T221, T225)) :- ','(in_orderc13(T164, T176), ','(in_orderc13(T170, T175), ','(appc26(T176, T177, T175, .(T221, T226)), ','(in_orderc13(T186, T228), app83(T226, T227, T228, T225))))).

Clauses:

in_orderc13(void, []).
in_orderc13(tree(T33, T25, T29), X33) :- ','(in_orderc13(T25, T32), ','(in_orderc13(T29, T31), appc26(T32, T33, T31, X33))).
appc26([], T46, T47, .(T46, T47)).
appc26(.(T56, T60), T61, T62, .(T56, X60)) :- appc26(T60, T61, T62, X60).
appc83([], T241, T242, .(T241, T242)).
appc83(.(T253, T258), T259, T260, .(T253, T257)) :- appc83(T258, T259, T260, T257).

Afs:

in_order1(x1, x2)  =  in_order1(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
in_order1_in: (f,b)
in_order13_in: (f,f)
in_orderc13_in: (f,f)
appc26_in: (b,f,b,f)
app26_in: (b,f,b,f)
app83_in: (b,f,b,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(tree(T13, void, T12), []) → U9_AG(T13, T12, in_order13_in_aa(T12, X10))
IN_ORDER1_IN_AG(tree(T13, void, T12), []) → IN_ORDER13_IN_AA(T12, X10)
IN_ORDER13_IN_AA(tree(T27, T25, T26), X33) → U1_AA(T27, T25, T26, X33, in_order13_in_aa(T25, X31))
IN_ORDER13_IN_AA(tree(T27, T25, T26), X33) → IN_ORDER13_IN_AA(T25, X31)
IN_ORDER13_IN_AA(tree(T30, T25, T29), X33) → U2_AA(T30, T25, T29, X33, in_orderc13_in_aa(T25, T28))
U2_AA(T30, T25, T29, X33, in_orderc13_out_aa(T25, T28)) → U3_AA(T30, T25, T29, X33, in_order13_in_aa(T29, X32))
U2_AA(T30, T25, T29, X33, in_orderc13_out_aa(T25, T28)) → IN_ORDER13_IN_AA(T29, X32)
IN_ORDER13_IN_AA(tree(T33, T25, T29), X33) → U4_AA(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U4_AA(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U5_AA(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U5_AA(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U6_AA(T33, T25, T29, X33, app26_in_gaga(T32, T33, T31, X33))
U5_AA(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → APP26_IN_GAGA(T32, T33, T31, X33)
APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → U7_GAGA(T56, T60, T61, T62, X60, app26_in_gaga(T60, T61, T62, X60))
APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → APP26_IN_GAGA(T60, T61, T62, X60)
IN_ORDER1_IN_AG(tree(T86, tree(T84, T82, T83), T85), []) → U10_AG(T86, T84, T82, T83, T85, in_order13_in_aa(T82, X94))
IN_ORDER1_IN_AG(tree(T86, tree(T84, T82, T83), T85), []) → IN_ORDER13_IN_AA(T82, X94)
IN_ORDER1_IN_AG(tree(T91, tree(T89, T82, T88), T90), []) → U11_AG(T91, T89, T82, T88, T90, in_orderc13_in_aa(T82, T87))
U11_AG(T91, T89, T82, T88, T90, in_orderc13_out_aa(T82, T87)) → U12_AG(T91, T89, T82, T88, T90, in_order13_in_aa(T88, X95))
U11_AG(T91, T89, T82, T88, T90, in_orderc13_out_aa(T82, T87)) → IN_ORDER13_IN_AA(T88, X95)
IN_ORDER1_IN_AG(tree(T96, tree(T94, T82, T88), T95), []) → U13_AG(T96, T94, T82, T88, T95, in_orderc13_in_aa(T82, T93))
U13_AG(T96, T94, T82, T88, T95, in_orderc13_out_aa(T82, T93)) → U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_in_aa(T88, T92))
U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_out_aa(T88, T92)) → U15_AG(T96, T94, T82, T88, T95, app26_in_gaga(T93, T94, T92, X96))
U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_out_aa(T88, T92)) → APP26_IN_GAGA(T93, T94, T92, X96)
IN_ORDER1_IN_AG(tree(T103, tree(T94, T82, T88), T102), []) → U16_AG(T103, T94, T82, T88, T102, in_orderc13_in_aa(T82, T93))
U16_AG(T103, T94, T82, T88, T102, in_orderc13_out_aa(T82, T93)) → U17_AG(T103, T94, T82, T88, T102, T93, in_orderc13_in_aa(T88, T92))
U17_AG(T103, T94, T82, T88, T102, T93, in_orderc13_out_aa(T88, T92)) → U18_AG(T103, T94, T82, T88, T102, appc26_in_gaga(T93, T94, T92, T101))
U18_AG(T103, T94, T82, T88, T102, appc26_out_gaga(T93, T94, T92, T101)) → U19_AG(T103, T94, T82, T88, T102, in_order13_in_aa(T102, X10))
U18_AG(T103, T94, T82, T88, T102, appc26_out_gaga(T93, T94, T92, T101)) → IN_ORDER13_IN_AA(T102, X10)
IN_ORDER1_IN_AG(tree(T137, void, T136), T132) → U20_AG(T137, T136, T132, in_order13_in_aa(T136, X125))
IN_ORDER1_IN_AG(tree(T137, void, T136), T132) → IN_ORDER13_IN_AA(T136, X125)
IN_ORDER1_IN_AG(tree(T168, tree(T166, T164, T165), T167), T132) → U21_AG(T168, T166, T164, T165, T167, T132, in_order13_in_aa(T164, X158))
IN_ORDER1_IN_AG(tree(T168, tree(T166, T164, T165), T167), T132) → IN_ORDER13_IN_AA(T164, X158)
IN_ORDER1_IN_AG(tree(T173, tree(T171, T164, T170), T172), T132) → U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_in_aa(T164, T169))
U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_out_aa(T164, T169)) → U23_AG(T173, T171, T164, T170, T172, T132, in_order13_in_aa(T170, X159))
U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_out_aa(T164, T169)) → IN_ORDER13_IN_AA(T170, X159)
IN_ORDER1_IN_AG(tree(T179, tree(T177, T164, T170), T178), T132) → U24_AG(T179, T177, T164, T170, T178, T132, in_orderc13_in_aa(T164, T176))
U24_AG(T179, T177, T164, T170, T178, T132, in_orderc13_out_aa(T164, T176)) → U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_in_aa(T170, T175))
U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_out_aa(T170, T175)) → U26_AG(T179, T177, T164, T170, T178, T132, app26_in_gaga(T176, T177, T175, X160))
U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_out_aa(T170, T175)) → APP26_IN_GAGA(T176, T177, T175, X160)
IN_ORDER1_IN_AG(tree(T187, tree(T177, T164, T170), T186), T132) → U27_AG(T187, T177, T164, T170, T186, T132, in_orderc13_in_aa(T164, T176))
U27_AG(T187, T177, T164, T170, T186, T132, in_orderc13_out_aa(T164, T176)) → U28_AG(T187, T177, T164, T170, T186, T132, T176, in_orderc13_in_aa(T170, T175))
U28_AG(T187, T177, T164, T170, T186, T132, T176, in_orderc13_out_aa(T170, T175)) → U29_AG(T187, T177, T164, T170, T186, T132, appc26_in_gaga(T176, T177, T175, T185))
U29_AG(T187, T177, T164, T170, T186, T132, appc26_out_gaga(T176, T177, T175, T185)) → U30_AG(T187, T177, T164, T170, T186, T132, in_order13_in_aa(T186, X125))
U29_AG(T187, T177, T164, T170, T186, T132, appc26_out_gaga(T176, T177, T175, T185)) → IN_ORDER13_IN_AA(T186, X125)
IN_ORDER1_IN_AG(tree(T227, tree(T177, T164, T170), T186), .(T221, T225)) → U31_AG(T227, T177, T164, T170, T186, T221, T225, in_orderc13_in_aa(T164, T176))
U31_AG(T227, T177, T164, T170, T186, T221, T225, in_orderc13_out_aa(T164, T176)) → U32_AG(T227, T177, T164, T170, T186, T221, T225, T176, in_orderc13_in_aa(T170, T175))
U32_AG(T227, T177, T164, T170, T186, T221, T225, T176, in_orderc13_out_aa(T170, T175)) → U33_AG(T227, T177, T164, T170, T186, T221, T225, appc26_in_gaga(T176, T177, T175, .(T221, T226)))
U33_AG(T227, T177, T164, T170, T186, T221, T225, appc26_out_gaga(T176, T177, T175, .(T221, T226))) → U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_in_aa(T186, T228))
U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_out_aa(T186, T228)) → U35_AG(T227, T177, T164, T170, T186, T221, T225, app83_in_gagg(T226, T227, T228, T225))
U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_out_aa(T186, T228)) → APP83_IN_GAGG(T226, T227, T228, T225)
APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → U8_GAGG(T253, T258, T259, T260, T257, app83_in_gagg(T258, T259, T260, T257))
APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → APP83_IN_GAGG(T258, T259, T260, T257)

The TRS R consists of the following rules:

in_orderc13_in_aa(void, []) → in_orderc13_out_aa(void, [])
in_orderc13_in_aa(tree(T33, T25, T29), X33) → U37_aa(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U37_aa(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U38_aa(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U38_aa(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T33, T25, T29, X33, appc26_in_gaga(T32, T33, T31, X33))
appc26_in_gaga([], T46, T47, .(T46, T47)) → appc26_out_gaga([], T46, T47, .(T46, T47))
appc26_in_gaga(.(T56, T60), T61, T62, .(T56, X60)) → U40_gaga(T56, T60, T61, T62, X60, appc26_in_gaga(T60, T61, T62, X60))
U40_gaga(T56, T60, T61, T62, X60, appc26_out_gaga(T60, T61, T62, X60)) → appc26_out_gaga(.(T56, T60), T61, T62, .(T56, X60))
U39_aa(T33, T25, T29, X33, appc26_out_gaga(T32, T33, T31, X33)) → in_orderc13_out_aa(tree(T33, T25, T29), X33)

The argument filtering Pi contains the following mapping:
[]  =  []
in_order13_in_aa(x1, x2)  =  in_order13_in_aa
in_orderc13_in_aa(x1, x2)  =  in_orderc13_in_aa
in_orderc13_out_aa(x1, x2)  =  in_orderc13_out_aa(x1, x2)
U37_aa(x1, x2, x3, x4, x5)  =  U37_aa(x5)
U38_aa(x1, x2, x3, x4, x5, x6)  =  U38_aa(x2, x5, x6)
U39_aa(x1, x2, x3, x4, x5)  =  U39_aa(x2, x3, x5)
appc26_in_gaga(x1, x2, x3, x4)  =  appc26_in_gaga(x1, x3)
appc26_out_gaga(x1, x2, x3, x4)  =  appc26_out_gaga(x1, x3, x4)
.(x1, x2)  =  .(x2)
U40_gaga(x1, x2, x3, x4, x5, x6)  =  U40_gaga(x2, x4, x6)
tree(x1, x2, x3)  =  tree(x2, x3)
app26_in_gaga(x1, x2, x3, x4)  =  app26_in_gaga(x1, x3)
app83_in_gagg(x1, x2, x3, x4)  =  app83_in_gagg(x1, x3, x4)
IN_ORDER1_IN_AG(x1, x2)  =  IN_ORDER1_IN_AG(x2)
U9_AG(x1, x2, x3)  =  U9_AG(x3)
IN_ORDER13_IN_AA(x1, x2)  =  IN_ORDER13_IN_AA
U1_AA(x1, x2, x3, x4, x5)  =  U1_AA(x5)
U2_AA(x1, x2, x3, x4, x5)  =  U2_AA(x5)
U3_AA(x1, x2, x3, x4, x5)  =  U3_AA(x5)
U4_AA(x1, x2, x3, x4, x5)  =  U4_AA(x5)
U5_AA(x1, x2, x3, x4, x5, x6)  =  U5_AA(x5, x6)
U6_AA(x1, x2, x3, x4, x5)  =  U6_AA(x5)
APP26_IN_GAGA(x1, x2, x3, x4)  =  APP26_IN_GAGA(x1, x3)
U7_GAGA(x1, x2, x3, x4, x5, x6)  =  U7_GAGA(x2, x4, x6)
U10_AG(x1, x2, x3, x4, x5, x6)  =  U10_AG(x6)
U11_AG(x1, x2, x3, x4, x5, x6)  =  U11_AG(x6)
U12_AG(x1, x2, x3, x4, x5, x6)  =  U12_AG(x6)
U13_AG(x1, x2, x3, x4, x5, x6)  =  U13_AG(x6)
U14_AG(x1, x2, x3, x4, x5, x6, x7)  =  U14_AG(x6, x7)
U15_AG(x1, x2, x3, x4, x5, x6)  =  U15_AG(x6)
U16_AG(x1, x2, x3, x4, x5, x6)  =  U16_AG(x6)
U17_AG(x1, x2, x3, x4, x5, x6, x7)  =  U17_AG(x6, x7)
U18_AG(x1, x2, x3, x4, x5, x6)  =  U18_AG(x6)
U19_AG(x1, x2, x3, x4, x5, x6)  =  U19_AG(x6)
U20_AG(x1, x2, x3, x4)  =  U20_AG(x3, x4)
U21_AG(x1, x2, x3, x4, x5, x6, x7)  =  U21_AG(x6, x7)
U22_AG(x1, x2, x3, x4, x5, x6, x7)  =  U22_AG(x6, x7)
U23_AG(x1, x2, x3, x4, x5, x6, x7)  =  U23_AG(x6, x7)
U24_AG(x1, x2, x3, x4, x5, x6, x7)  =  U24_AG(x6, x7)
U25_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U25_AG(x6, x7, x8)
U26_AG(x1, x2, x3, x4, x5, x6, x7)  =  U26_AG(x6, x7)
U27_AG(x1, x2, x3, x4, x5, x6, x7)  =  U27_AG(x6, x7)
U28_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U28_AG(x6, x7, x8)
U29_AG(x1, x2, x3, x4, x5, x6, x7)  =  U29_AG(x6, x7)
U30_AG(x1, x2, x3, x4, x5, x6, x7)  =  U30_AG(x6, x7)
U31_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U31_AG(x7, x8)
U32_AG(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U32_AG(x7, x8, x9)
U33_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U33_AG(x7, x8)
U34_AG(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U34_AG(x7, x8, x9)
U35_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U35_AG(x7, x8)
APP83_IN_GAGG(x1, x2, x3, x4)  =  APP83_IN_GAGG(x1, x3, x4)
U8_GAGG(x1, x2, x3, x4, x5, x6)  =  U8_GAGG(x2, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(tree(T13, void, T12), []) → U9_AG(T13, T12, in_order13_in_aa(T12, X10))
IN_ORDER1_IN_AG(tree(T13, void, T12), []) → IN_ORDER13_IN_AA(T12, X10)
IN_ORDER13_IN_AA(tree(T27, T25, T26), X33) → U1_AA(T27, T25, T26, X33, in_order13_in_aa(T25, X31))
IN_ORDER13_IN_AA(tree(T27, T25, T26), X33) → IN_ORDER13_IN_AA(T25, X31)
IN_ORDER13_IN_AA(tree(T30, T25, T29), X33) → U2_AA(T30, T25, T29, X33, in_orderc13_in_aa(T25, T28))
U2_AA(T30, T25, T29, X33, in_orderc13_out_aa(T25, T28)) → U3_AA(T30, T25, T29, X33, in_order13_in_aa(T29, X32))
U2_AA(T30, T25, T29, X33, in_orderc13_out_aa(T25, T28)) → IN_ORDER13_IN_AA(T29, X32)
IN_ORDER13_IN_AA(tree(T33, T25, T29), X33) → U4_AA(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U4_AA(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U5_AA(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U5_AA(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U6_AA(T33, T25, T29, X33, app26_in_gaga(T32, T33, T31, X33))
U5_AA(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → APP26_IN_GAGA(T32, T33, T31, X33)
APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → U7_GAGA(T56, T60, T61, T62, X60, app26_in_gaga(T60, T61, T62, X60))
APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → APP26_IN_GAGA(T60, T61, T62, X60)
IN_ORDER1_IN_AG(tree(T86, tree(T84, T82, T83), T85), []) → U10_AG(T86, T84, T82, T83, T85, in_order13_in_aa(T82, X94))
IN_ORDER1_IN_AG(tree(T86, tree(T84, T82, T83), T85), []) → IN_ORDER13_IN_AA(T82, X94)
IN_ORDER1_IN_AG(tree(T91, tree(T89, T82, T88), T90), []) → U11_AG(T91, T89, T82, T88, T90, in_orderc13_in_aa(T82, T87))
U11_AG(T91, T89, T82, T88, T90, in_orderc13_out_aa(T82, T87)) → U12_AG(T91, T89, T82, T88, T90, in_order13_in_aa(T88, X95))
U11_AG(T91, T89, T82, T88, T90, in_orderc13_out_aa(T82, T87)) → IN_ORDER13_IN_AA(T88, X95)
IN_ORDER1_IN_AG(tree(T96, tree(T94, T82, T88), T95), []) → U13_AG(T96, T94, T82, T88, T95, in_orderc13_in_aa(T82, T93))
U13_AG(T96, T94, T82, T88, T95, in_orderc13_out_aa(T82, T93)) → U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_in_aa(T88, T92))
U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_out_aa(T88, T92)) → U15_AG(T96, T94, T82, T88, T95, app26_in_gaga(T93, T94, T92, X96))
U14_AG(T96, T94, T82, T88, T95, T93, in_orderc13_out_aa(T88, T92)) → APP26_IN_GAGA(T93, T94, T92, X96)
IN_ORDER1_IN_AG(tree(T103, tree(T94, T82, T88), T102), []) → U16_AG(T103, T94, T82, T88, T102, in_orderc13_in_aa(T82, T93))
U16_AG(T103, T94, T82, T88, T102, in_orderc13_out_aa(T82, T93)) → U17_AG(T103, T94, T82, T88, T102, T93, in_orderc13_in_aa(T88, T92))
U17_AG(T103, T94, T82, T88, T102, T93, in_orderc13_out_aa(T88, T92)) → U18_AG(T103, T94, T82, T88, T102, appc26_in_gaga(T93, T94, T92, T101))
U18_AG(T103, T94, T82, T88, T102, appc26_out_gaga(T93, T94, T92, T101)) → U19_AG(T103, T94, T82, T88, T102, in_order13_in_aa(T102, X10))
U18_AG(T103, T94, T82, T88, T102, appc26_out_gaga(T93, T94, T92, T101)) → IN_ORDER13_IN_AA(T102, X10)
IN_ORDER1_IN_AG(tree(T137, void, T136), T132) → U20_AG(T137, T136, T132, in_order13_in_aa(T136, X125))
IN_ORDER1_IN_AG(tree(T137, void, T136), T132) → IN_ORDER13_IN_AA(T136, X125)
IN_ORDER1_IN_AG(tree(T168, tree(T166, T164, T165), T167), T132) → U21_AG(T168, T166, T164, T165, T167, T132, in_order13_in_aa(T164, X158))
IN_ORDER1_IN_AG(tree(T168, tree(T166, T164, T165), T167), T132) → IN_ORDER13_IN_AA(T164, X158)
IN_ORDER1_IN_AG(tree(T173, tree(T171, T164, T170), T172), T132) → U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_in_aa(T164, T169))
U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_out_aa(T164, T169)) → U23_AG(T173, T171, T164, T170, T172, T132, in_order13_in_aa(T170, X159))
U22_AG(T173, T171, T164, T170, T172, T132, in_orderc13_out_aa(T164, T169)) → IN_ORDER13_IN_AA(T170, X159)
IN_ORDER1_IN_AG(tree(T179, tree(T177, T164, T170), T178), T132) → U24_AG(T179, T177, T164, T170, T178, T132, in_orderc13_in_aa(T164, T176))
U24_AG(T179, T177, T164, T170, T178, T132, in_orderc13_out_aa(T164, T176)) → U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_in_aa(T170, T175))
U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_out_aa(T170, T175)) → U26_AG(T179, T177, T164, T170, T178, T132, app26_in_gaga(T176, T177, T175, X160))
U25_AG(T179, T177, T164, T170, T178, T132, T176, in_orderc13_out_aa(T170, T175)) → APP26_IN_GAGA(T176, T177, T175, X160)
IN_ORDER1_IN_AG(tree(T187, tree(T177, T164, T170), T186), T132) → U27_AG(T187, T177, T164, T170, T186, T132, in_orderc13_in_aa(T164, T176))
U27_AG(T187, T177, T164, T170, T186, T132, in_orderc13_out_aa(T164, T176)) → U28_AG(T187, T177, T164, T170, T186, T132, T176, in_orderc13_in_aa(T170, T175))
U28_AG(T187, T177, T164, T170, T186, T132, T176, in_orderc13_out_aa(T170, T175)) → U29_AG(T187, T177, T164, T170, T186, T132, appc26_in_gaga(T176, T177, T175, T185))
U29_AG(T187, T177, T164, T170, T186, T132, appc26_out_gaga(T176, T177, T175, T185)) → U30_AG(T187, T177, T164, T170, T186, T132, in_order13_in_aa(T186, X125))
U29_AG(T187, T177, T164, T170, T186, T132, appc26_out_gaga(T176, T177, T175, T185)) → IN_ORDER13_IN_AA(T186, X125)
IN_ORDER1_IN_AG(tree(T227, tree(T177, T164, T170), T186), .(T221, T225)) → U31_AG(T227, T177, T164, T170, T186, T221, T225, in_orderc13_in_aa(T164, T176))
U31_AG(T227, T177, T164, T170, T186, T221, T225, in_orderc13_out_aa(T164, T176)) → U32_AG(T227, T177, T164, T170, T186, T221, T225, T176, in_orderc13_in_aa(T170, T175))
U32_AG(T227, T177, T164, T170, T186, T221, T225, T176, in_orderc13_out_aa(T170, T175)) → U33_AG(T227, T177, T164, T170, T186, T221, T225, appc26_in_gaga(T176, T177, T175, .(T221, T226)))
U33_AG(T227, T177, T164, T170, T186, T221, T225, appc26_out_gaga(T176, T177, T175, .(T221, T226))) → U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_in_aa(T186, T228))
U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_out_aa(T186, T228)) → U35_AG(T227, T177, T164, T170, T186, T221, T225, app83_in_gagg(T226, T227, T228, T225))
U34_AG(T227, T177, T164, T170, T186, T221, T225, T226, in_orderc13_out_aa(T186, T228)) → APP83_IN_GAGG(T226, T227, T228, T225)
APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → U8_GAGG(T253, T258, T259, T260, T257, app83_in_gagg(T258, T259, T260, T257))
APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → APP83_IN_GAGG(T258, T259, T260, T257)

The TRS R consists of the following rules:

in_orderc13_in_aa(void, []) → in_orderc13_out_aa(void, [])
in_orderc13_in_aa(tree(T33, T25, T29), X33) → U37_aa(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U37_aa(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U38_aa(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U38_aa(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T33, T25, T29, X33, appc26_in_gaga(T32, T33, T31, X33))
appc26_in_gaga([], T46, T47, .(T46, T47)) → appc26_out_gaga([], T46, T47, .(T46, T47))
appc26_in_gaga(.(T56, T60), T61, T62, .(T56, X60)) → U40_gaga(T56, T60, T61, T62, X60, appc26_in_gaga(T60, T61, T62, X60))
U40_gaga(T56, T60, T61, T62, X60, appc26_out_gaga(T60, T61, T62, X60)) → appc26_out_gaga(.(T56, T60), T61, T62, .(T56, X60))
U39_aa(T33, T25, T29, X33, appc26_out_gaga(T32, T33, T31, X33)) → in_orderc13_out_aa(tree(T33, T25, T29), X33)

The argument filtering Pi contains the following mapping:
[]  =  []
in_order13_in_aa(x1, x2)  =  in_order13_in_aa
in_orderc13_in_aa(x1, x2)  =  in_orderc13_in_aa
in_orderc13_out_aa(x1, x2)  =  in_orderc13_out_aa(x1, x2)
U37_aa(x1, x2, x3, x4, x5)  =  U37_aa(x5)
U38_aa(x1, x2, x3, x4, x5, x6)  =  U38_aa(x2, x5, x6)
U39_aa(x1, x2, x3, x4, x5)  =  U39_aa(x2, x3, x5)
appc26_in_gaga(x1, x2, x3, x4)  =  appc26_in_gaga(x1, x3)
appc26_out_gaga(x1, x2, x3, x4)  =  appc26_out_gaga(x1, x3, x4)
.(x1, x2)  =  .(x2)
U40_gaga(x1, x2, x3, x4, x5, x6)  =  U40_gaga(x2, x4, x6)
tree(x1, x2, x3)  =  tree(x2, x3)
app26_in_gaga(x1, x2, x3, x4)  =  app26_in_gaga(x1, x3)
app83_in_gagg(x1, x2, x3, x4)  =  app83_in_gagg(x1, x3, x4)
IN_ORDER1_IN_AG(x1, x2)  =  IN_ORDER1_IN_AG(x2)
U9_AG(x1, x2, x3)  =  U9_AG(x3)
IN_ORDER13_IN_AA(x1, x2)  =  IN_ORDER13_IN_AA
U1_AA(x1, x2, x3, x4, x5)  =  U1_AA(x5)
U2_AA(x1, x2, x3, x4, x5)  =  U2_AA(x5)
U3_AA(x1, x2, x3, x4, x5)  =  U3_AA(x5)
U4_AA(x1, x2, x3, x4, x5)  =  U4_AA(x5)
U5_AA(x1, x2, x3, x4, x5, x6)  =  U5_AA(x5, x6)
U6_AA(x1, x2, x3, x4, x5)  =  U6_AA(x5)
APP26_IN_GAGA(x1, x2, x3, x4)  =  APP26_IN_GAGA(x1, x3)
U7_GAGA(x1, x2, x3, x4, x5, x6)  =  U7_GAGA(x2, x4, x6)
U10_AG(x1, x2, x3, x4, x5, x6)  =  U10_AG(x6)
U11_AG(x1, x2, x3, x4, x5, x6)  =  U11_AG(x6)
U12_AG(x1, x2, x3, x4, x5, x6)  =  U12_AG(x6)
U13_AG(x1, x2, x3, x4, x5, x6)  =  U13_AG(x6)
U14_AG(x1, x2, x3, x4, x5, x6, x7)  =  U14_AG(x6, x7)
U15_AG(x1, x2, x3, x4, x5, x6)  =  U15_AG(x6)
U16_AG(x1, x2, x3, x4, x5, x6)  =  U16_AG(x6)
U17_AG(x1, x2, x3, x4, x5, x6, x7)  =  U17_AG(x6, x7)
U18_AG(x1, x2, x3, x4, x5, x6)  =  U18_AG(x6)
U19_AG(x1, x2, x3, x4, x5, x6)  =  U19_AG(x6)
U20_AG(x1, x2, x3, x4)  =  U20_AG(x3, x4)
U21_AG(x1, x2, x3, x4, x5, x6, x7)  =  U21_AG(x6, x7)
U22_AG(x1, x2, x3, x4, x5, x6, x7)  =  U22_AG(x6, x7)
U23_AG(x1, x2, x3, x4, x5, x6, x7)  =  U23_AG(x6, x7)
U24_AG(x1, x2, x3, x4, x5, x6, x7)  =  U24_AG(x6, x7)
U25_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U25_AG(x6, x7, x8)
U26_AG(x1, x2, x3, x4, x5, x6, x7)  =  U26_AG(x6, x7)
U27_AG(x1, x2, x3, x4, x5, x6, x7)  =  U27_AG(x6, x7)
U28_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U28_AG(x6, x7, x8)
U29_AG(x1, x2, x3, x4, x5, x6, x7)  =  U29_AG(x6, x7)
U30_AG(x1, x2, x3, x4, x5, x6, x7)  =  U30_AG(x6, x7)
U31_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U31_AG(x7, x8)
U32_AG(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U32_AG(x7, x8, x9)
U33_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U33_AG(x7, x8)
U34_AG(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U34_AG(x7, x8, x9)
U35_AG(x1, x2, x3, x4, x5, x6, x7, x8)  =  U35_AG(x7, x8)
APP83_IN_GAGG(x1, x2, x3, x4)  =  APP83_IN_GAGG(x1, x3, x4)
U8_GAGG(x1, x2, x3, x4, x5, x6)  =  U8_GAGG(x2, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 46 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → APP83_IN_GAGG(T258, T259, T260, T257)

The TRS R consists of the following rules:

in_orderc13_in_aa(void, []) → in_orderc13_out_aa(void, [])
in_orderc13_in_aa(tree(T33, T25, T29), X33) → U37_aa(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U37_aa(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U38_aa(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U38_aa(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T33, T25, T29, X33, appc26_in_gaga(T32, T33, T31, X33))
appc26_in_gaga([], T46, T47, .(T46, T47)) → appc26_out_gaga([], T46, T47, .(T46, T47))
appc26_in_gaga(.(T56, T60), T61, T62, .(T56, X60)) → U40_gaga(T56, T60, T61, T62, X60, appc26_in_gaga(T60, T61, T62, X60))
U40_gaga(T56, T60, T61, T62, X60, appc26_out_gaga(T60, T61, T62, X60)) → appc26_out_gaga(.(T56, T60), T61, T62, .(T56, X60))
U39_aa(T33, T25, T29, X33, appc26_out_gaga(T32, T33, T31, X33)) → in_orderc13_out_aa(tree(T33, T25, T29), X33)

The argument filtering Pi contains the following mapping:
[]  =  []
in_orderc13_in_aa(x1, x2)  =  in_orderc13_in_aa
in_orderc13_out_aa(x1, x2)  =  in_orderc13_out_aa(x1, x2)
U37_aa(x1, x2, x3, x4, x5)  =  U37_aa(x5)
U38_aa(x1, x2, x3, x4, x5, x6)  =  U38_aa(x2, x5, x6)
U39_aa(x1, x2, x3, x4, x5)  =  U39_aa(x2, x3, x5)
appc26_in_gaga(x1, x2, x3, x4)  =  appc26_in_gaga(x1, x3)
appc26_out_gaga(x1, x2, x3, x4)  =  appc26_out_gaga(x1, x3, x4)
.(x1, x2)  =  .(x2)
U40_gaga(x1, x2, x3, x4, x5, x6)  =  U40_gaga(x2, x4, x6)
tree(x1, x2, x3)  =  tree(x2, x3)
APP83_IN_GAGG(x1, x2, x3, x4)  =  APP83_IN_GAGG(x1, x3, x4)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP83_IN_GAGG(.(T253, T258), T259, T260, .(T253, T257)) → APP83_IN_GAGG(T258, T259, T260, T257)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APP83_IN_GAGG(x1, x2, x3, x4)  =  APP83_IN_GAGG(x1, x3, x4)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP83_IN_GAGG(.(T258), T260, .(T257)) → APP83_IN_GAGG(T258, T260, T257)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP83_IN_GAGG(.(T258), T260, .(T257)) → APP83_IN_GAGG(T258, T260, T257)
    The graph contains the following edges 1 > 1, 2 >= 2, 3 > 3

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → APP26_IN_GAGA(T60, T61, T62, X60)

The TRS R consists of the following rules:

in_orderc13_in_aa(void, []) → in_orderc13_out_aa(void, [])
in_orderc13_in_aa(tree(T33, T25, T29), X33) → U37_aa(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U37_aa(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U38_aa(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U38_aa(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T33, T25, T29, X33, appc26_in_gaga(T32, T33, T31, X33))
appc26_in_gaga([], T46, T47, .(T46, T47)) → appc26_out_gaga([], T46, T47, .(T46, T47))
appc26_in_gaga(.(T56, T60), T61, T62, .(T56, X60)) → U40_gaga(T56, T60, T61, T62, X60, appc26_in_gaga(T60, T61, T62, X60))
U40_gaga(T56, T60, T61, T62, X60, appc26_out_gaga(T60, T61, T62, X60)) → appc26_out_gaga(.(T56, T60), T61, T62, .(T56, X60))
U39_aa(T33, T25, T29, X33, appc26_out_gaga(T32, T33, T31, X33)) → in_orderc13_out_aa(tree(T33, T25, T29), X33)

The argument filtering Pi contains the following mapping:
[]  =  []
in_orderc13_in_aa(x1, x2)  =  in_orderc13_in_aa
in_orderc13_out_aa(x1, x2)  =  in_orderc13_out_aa(x1, x2)
U37_aa(x1, x2, x3, x4, x5)  =  U37_aa(x5)
U38_aa(x1, x2, x3, x4, x5, x6)  =  U38_aa(x2, x5, x6)
U39_aa(x1, x2, x3, x4, x5)  =  U39_aa(x2, x3, x5)
appc26_in_gaga(x1, x2, x3, x4)  =  appc26_in_gaga(x1, x3)
appc26_out_gaga(x1, x2, x3, x4)  =  appc26_out_gaga(x1, x3, x4)
.(x1, x2)  =  .(x2)
U40_gaga(x1, x2, x3, x4, x5, x6)  =  U40_gaga(x2, x4, x6)
tree(x1, x2, x3)  =  tree(x2, x3)
APP26_IN_GAGA(x1, x2, x3, x4)  =  APP26_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP26_IN_GAGA(.(T56, T60), T61, T62, .(T56, X60)) → APP26_IN_GAGA(T60, T61, T62, X60)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
APP26_IN_GAGA(x1, x2, x3, x4)  =  APP26_IN_GAGA(x1, x3)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP26_IN_GAGA(.(T60), T62) → APP26_IN_GAGA(T60, T62)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP26_IN_GAGA(.(T60), T62) → APP26_IN_GAGA(T60, T62)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER13_IN_AA(tree(T30, T25, T29), X33) → U2_AA(T30, T25, T29, X33, in_orderc13_in_aa(T25, T28))
U2_AA(T30, T25, T29, X33, in_orderc13_out_aa(T25, T28)) → IN_ORDER13_IN_AA(T29, X32)
IN_ORDER13_IN_AA(tree(T27, T25, T26), X33) → IN_ORDER13_IN_AA(T25, X31)

The TRS R consists of the following rules:

in_orderc13_in_aa(void, []) → in_orderc13_out_aa(void, [])
in_orderc13_in_aa(tree(T33, T25, T29), X33) → U37_aa(T33, T25, T29, X33, in_orderc13_in_aa(T25, T32))
U37_aa(T33, T25, T29, X33, in_orderc13_out_aa(T25, T32)) → U38_aa(T33, T25, T29, X33, T32, in_orderc13_in_aa(T29, T31))
U38_aa(T33, T25, T29, X33, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T33, T25, T29, X33, appc26_in_gaga(T32, T33, T31, X33))
appc26_in_gaga([], T46, T47, .(T46, T47)) → appc26_out_gaga([], T46, T47, .(T46, T47))
appc26_in_gaga(.(T56, T60), T61, T62, .(T56, X60)) → U40_gaga(T56, T60, T61, T62, X60, appc26_in_gaga(T60, T61, T62, X60))
U40_gaga(T56, T60, T61, T62, X60, appc26_out_gaga(T60, T61, T62, X60)) → appc26_out_gaga(.(T56, T60), T61, T62, .(T56, X60))
U39_aa(T33, T25, T29, X33, appc26_out_gaga(T32, T33, T31, X33)) → in_orderc13_out_aa(tree(T33, T25, T29), X33)

The argument filtering Pi contains the following mapping:
[]  =  []
in_orderc13_in_aa(x1, x2)  =  in_orderc13_in_aa
in_orderc13_out_aa(x1, x2)  =  in_orderc13_out_aa(x1, x2)
U37_aa(x1, x2, x3, x4, x5)  =  U37_aa(x5)
U38_aa(x1, x2, x3, x4, x5, x6)  =  U38_aa(x2, x5, x6)
U39_aa(x1, x2, x3, x4, x5)  =  U39_aa(x2, x3, x5)
appc26_in_gaga(x1, x2, x3, x4)  =  appc26_in_gaga(x1, x3)
appc26_out_gaga(x1, x2, x3, x4)  =  appc26_out_gaga(x1, x3, x4)
.(x1, x2)  =  .(x2)
U40_gaga(x1, x2, x3, x4, x5, x6)  =  U40_gaga(x2, x4, x6)
tree(x1, x2, x3)  =  tree(x2, x3)
IN_ORDER13_IN_AA(x1, x2)  =  IN_ORDER13_IN_AA
U2_AA(x1, x2, x3, x4, x5)  =  U2_AA(x5)

We have to consider all (P,R,Pi)-chains

(22) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(23) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN_ORDER13_IN_AAU2_AA(in_orderc13_in_aa)
U2_AA(in_orderc13_out_aa(T25, T28)) → IN_ORDER13_IN_AA
IN_ORDER13_IN_AAIN_ORDER13_IN_AA

The TRS R consists of the following rules:

in_orderc13_in_aain_orderc13_out_aa(void, [])
in_orderc13_in_aaU37_aa(in_orderc13_in_aa)
U37_aa(in_orderc13_out_aa(T25, T32)) → U38_aa(T25, T32, in_orderc13_in_aa)
U38_aa(T25, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T25, T29, appc26_in_gaga(T32, T31))
appc26_in_gaga([], T47) → appc26_out_gaga([], T47, .(T47))
appc26_in_gaga(.(T60), T62) → U40_gaga(T60, T62, appc26_in_gaga(T60, T62))
U40_gaga(T60, T62, appc26_out_gaga(T60, T62, X60)) → appc26_out_gaga(.(T60), T62, .(X60))
U39_aa(T25, T29, appc26_out_gaga(T32, T31, X33)) → in_orderc13_out_aa(tree(T25, T29), X33)

The set Q consists of the following terms:

in_orderc13_in_aa
U37_aa(x0)
U38_aa(x0, x1, x2)
appc26_in_gaga(x0, x1)
U40_gaga(x0, x1, x2)
U39_aa(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(24) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule IN_ORDER13_IN_AAU2_AA(in_orderc13_in_aa) at position [0] we obtained the following new rules [LPAR04]:

IN_ORDER13_IN_AAU2_AA(in_orderc13_out_aa(void, []))
IN_ORDER13_IN_AAU2_AA(U37_aa(in_orderc13_in_aa))

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_AA(in_orderc13_out_aa(T25, T28)) → IN_ORDER13_IN_AA
IN_ORDER13_IN_AAIN_ORDER13_IN_AA
IN_ORDER13_IN_AAU2_AA(in_orderc13_out_aa(void, []))
IN_ORDER13_IN_AAU2_AA(U37_aa(in_orderc13_in_aa))

The TRS R consists of the following rules:

in_orderc13_in_aain_orderc13_out_aa(void, [])
in_orderc13_in_aaU37_aa(in_orderc13_in_aa)
U37_aa(in_orderc13_out_aa(T25, T32)) → U38_aa(T25, T32, in_orderc13_in_aa)
U38_aa(T25, T32, in_orderc13_out_aa(T29, T31)) → U39_aa(T25, T29, appc26_in_gaga(T32, T31))
appc26_in_gaga([], T47) → appc26_out_gaga([], T47, .(T47))
appc26_in_gaga(.(T60), T62) → U40_gaga(T60, T62, appc26_in_gaga(T60, T62))
U40_gaga(T60, T62, appc26_out_gaga(T60, T62, X60)) → appc26_out_gaga(.(T60), T62, .(X60))
U39_aa(T25, T29, appc26_out_gaga(T32, T31, X33)) → in_orderc13_out_aa(tree(T25, T29), X33)

The set Q consists of the following terms:

in_orderc13_in_aa
U37_aa(x0)
U38_aa(x0, x1, x2)
appc26_in_gaga(x0, x1)
U40_gaga(x0, x1, x2)
U39_aa(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(26) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = IN_ORDER13_IN_AA evaluates to t =IN_ORDER13_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from IN_ORDER13_IN_AA to IN_ORDER13_IN_AA.



(27) NO