(0) Obligation:

Clauses:

in(X, tree(X, X1, X2)).
in(X, tree(Y, Left, X3)) :- ','(less(X, Y), in(X, Left)).
in(X, tree(Y, X4, Right)) :- ','(less(Y, X), in(X, Right)).
less(0, s(X5)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

in(a,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

in10(tree(T49, T50, T51)) :- ','(lessc22(T49), in10(T50)).
in10(tree(T71, T72, T73)) :- ','(lessc33(T71), in10(T73)).
less42(s(T108), s(T107)) :- less42(T108, T107).
less54(s(T147), s(T149)) :- less54(T147, T149).
p40(T91, T90, T15) :- less42(T91, T90).
p40(T94, T90, T15) :- ','(lessc42(T94, T90), in1(s(T94), T15)).
p53(T129, T132, T131) :- less54(T129, T132).
p53(T129, T135, T131) :- ','(lessc54(T129, T135), in1(T135, T131)).
in1(0, tree(s(T22), T15, T16)) :- in10(T15).
in1(s(T91), tree(s(T90), T15, T16)) :- p40(T91, T90, T15).
in1(T132, tree(T129, T130, T131)) :- p53(T129, T132, T131).
in1(0, tree(s(T171), T164, T165)) :- in10(T164).
in1(s(T186), tree(s(T185), T164, T165)) :- p40(T186, T185, T164).
in1(T204, tree(T201, T202, T203)) :- p53(T201, T204, T203).

Clauses:

inc10(tree(0, T35, T36)).
inc10(tree(T49, T50, T51)) :- ','(lessc22(T49), inc10(T50)).
inc10(tree(T71, T72, T73)) :- ','(lessc33(T71), inc10(T73)).
inc1(T6, tree(T6, T7, T8)).
inc1(0, tree(s(T22), T15, T16)) :- inc10(T15).
inc1(s(T91), tree(s(T90), T15, T16)) :- qc40(T91, T90, T15).
inc1(T132, tree(T129, T130, T131)) :- qc53(T129, T132, T131).
inc1(0, tree(s(T171), T164, T165)) :- inc10(T164).
inc1(s(T186), tree(s(T185), T164, T165)) :- qc40(T186, T185, T164).
inc1(T204, tree(T201, T202, T203)) :- qc53(T201, T204, T203).
lessc42(0, s(T101)).
lessc42(s(T108), s(T107)) :- lessc42(T108, T107).
lessc54(0, s(T142)).
lessc54(s(T147), s(T149)) :- lessc54(T147, T149).
qc40(T94, T90, T15) :- ','(lessc42(T94, T90), inc1(s(T94), T15)).
qc53(T129, T135, T131) :- ','(lessc54(T129, T135), inc1(T135, T131)).
lessc22(s(T60)).

Afs:

in1(x1, x2)  =  in1(x2)

(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)

Deleted triples and predicates having undefined goals [UNKNOWN].

(4) Obligation:

Triples:

in10(tree(T49, T50, T51)) :- ','(lessc22(T49), in10(T50)).
less42(s(T108), s(T107)) :- less42(T108, T107).
less54(s(T147), s(T149)) :- less54(T147, T149).
p40(T91, T90, T15) :- less42(T91, T90).
p40(T94, T90, T15) :- ','(lessc42(T94, T90), in1(s(T94), T15)).
p53(T129, T132, T131) :- less54(T129, T132).
p53(T129, T135, T131) :- ','(lessc54(T129, T135), in1(T135, T131)).
in1(0, tree(s(T22), T15, T16)) :- in10(T15).
in1(s(T91), tree(s(T90), T15, T16)) :- p40(T91, T90, T15).
in1(T132, tree(T129, T130, T131)) :- p53(T129, T132, T131).
in1(0, tree(s(T171), T164, T165)) :- in10(T164).
in1(s(T186), tree(s(T185), T164, T165)) :- p40(T186, T185, T164).
in1(T204, tree(T201, T202, T203)) :- p53(T201, T204, T203).

Clauses:

inc10(tree(0, T35, T36)).
inc10(tree(T49, T50, T51)) :- ','(lessc22(T49), inc10(T50)).
inc1(T6, tree(T6, T7, T8)).
inc1(0, tree(s(T22), T15, T16)) :- inc10(T15).
inc1(s(T91), tree(s(T90), T15, T16)) :- qc40(T91, T90, T15).
inc1(T132, tree(T129, T130, T131)) :- qc53(T129, T132, T131).
inc1(0, tree(s(T171), T164, T165)) :- inc10(T164).
inc1(s(T186), tree(s(T185), T164, T165)) :- qc40(T186, T185, T164).
inc1(T204, tree(T201, T202, T203)) :- qc53(T201, T204, T203).
lessc42(0, s(T101)).
lessc42(s(T108), s(T107)) :- lessc42(T108, T107).
lessc54(0, s(T142)).
lessc54(s(T147), s(T149)) :- lessc54(T147, T149).
qc40(T94, T90, T15) :- ','(lessc42(T94, T90), inc1(s(T94), T15)).
qc53(T129, T135, T131) :- ','(lessc54(T129, T135), inc1(T135, T131)).
lessc22(s(T60)).

Afs:

in1(x1, x2)  =  in1(x2)

(5) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
in1_in: (f,b) (b,b)
in10_in: (b)
p40_in: (f,b,b) (b,b,b)
less42_in: (f,b) (b,b)
lessc42_in: (f,b) (b,b)
p53_in: (b,b,b) (b,f,b)
less54_in: (b,b) (b,f)
lessc54_in: (b,b) (b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_AG(0, tree(s(T22), T15, T16)) → U11_AG(T22, T15, T16, in10_in_g(T15))
IN1_IN_AG(0, tree(s(T22), T15, T16)) → IN10_IN_G(T15)
IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))
U1_G(T49, T50, T51, lessc22_out_g(T49)) → U2_G(T49, T50, T51, in10_in_g(T50))
U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
IN1_IN_AG(s(T91), tree(s(T90), T15, T16)) → U12_AG(T91, T90, T15, T16, p40_in_agg(T91, T90, T15))
IN1_IN_AG(s(T91), tree(s(T90), T15, T16)) → P40_IN_AGG(T91, T90, T15)
P40_IN_AGG(T91, T90, T15) → U5_AGG(T91, T90, T15, less42_in_ag(T91, T90))
P40_IN_AGG(T91, T90, T15) → LESS42_IN_AG(T91, T90)
LESS42_IN_AG(s(T108), s(T107)) → U3_AG(T108, T107, less42_in_ag(T108, T107))
LESS42_IN_AG(s(T108), s(T107)) → LESS42_IN_AG(T108, T107)
P40_IN_AGG(T94, T90, T15) → U6_AGG(T94, T90, T15, lessc42_in_ag(T94, T90))
U6_AGG(T94, T90, T15, lessc42_out_ag(T94, T90)) → U7_AGG(T94, T90, T15, in1_in_gg(s(T94), T15))
U6_AGG(T94, T90, T15, lessc42_out_ag(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(0, tree(s(T22), T15, T16)) → U11_GG(T22, T15, T16, in10_in_g(T15))
IN1_IN_GG(0, tree(s(T22), T15, T16)) → IN10_IN_G(T15)
IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → U12_GG(T91, T90, T15, T16, p40_in_ggg(T91, T90, T15))
IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
P40_IN_GGG(T91, T90, T15) → U5_GGG(T91, T90, T15, less42_in_gg(T91, T90))
P40_IN_GGG(T91, T90, T15) → LESS42_IN_GG(T91, T90)
LESS42_IN_GG(s(T108), s(T107)) → U3_GG(T108, T107, less42_in_gg(T108, T107))
LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)
P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → U7_GGG(T94, T90, T15, in1_in_gg(s(T94), T15))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(T132, tree(T129, T130, T131)) → U13_GG(T132, T129, T130, T131, p53_in_ggg(T129, T132, T131))
IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
P53_IN_GGG(T129, T132, T131) → U8_GGG(T129, T132, T131, less54_in_gg(T129, T132))
P53_IN_GGG(T129, T132, T131) → LESS54_IN_GG(T129, T132)
LESS54_IN_GG(s(T147), s(T149)) → U4_GG(T147, T149, less54_in_gg(T147, T149))
LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)
P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → U10_GGG(T129, T135, T131, in1_in_gg(T135, T131))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)
IN1_IN_GG(0, tree(s(T171), T164, T165)) → U14_GG(T171, T164, T165, in10_in_g(T164))
IN1_IN_GG(s(T186), tree(s(T185), T164, T165)) → U15_GG(T186, T185, T164, T165, p40_in_ggg(T186, T185, T164))
IN1_IN_GG(T204, tree(T201, T202, T203)) → U16_GG(T204, T201, T202, T203, p53_in_ggg(T201, T204, T203))
IN1_IN_AG(T132, tree(T129, T130, T131)) → U13_AG(T132, T129, T130, T131, p53_in_gag(T129, T132, T131))
IN1_IN_AG(T132, tree(T129, T130, T131)) → P53_IN_GAG(T129, T132, T131)
P53_IN_GAG(T129, T132, T131) → U8_GAG(T129, T132, T131, less54_in_ga(T129, T132))
P53_IN_GAG(T129, T132, T131) → LESS54_IN_GA(T129, T132)
LESS54_IN_GA(s(T147), s(T149)) → U4_GA(T147, T149, less54_in_ga(T147, T149))
LESS54_IN_GA(s(T147), s(T149)) → LESS54_IN_GA(T147, T149)
P53_IN_GAG(T129, T135, T131) → U9_GAG(T129, T135, T131, lessc54_in_ga(T129, T135))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → U10_GAG(T129, T135, T131, in1_in_ag(T135, T131))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → IN1_IN_AG(T135, T131)
IN1_IN_AG(0, tree(s(T171), T164, T165)) → U14_AG(T171, T164, T165, in10_in_g(T164))
IN1_IN_AG(s(T186), tree(s(T185), T164, T165)) → U15_AG(T186, T185, T164, T165, p40_in_agg(T186, T185, T164))
IN1_IN_AG(T204, tree(T201, T202, T203)) → U16_AG(T204, T201, T202, T203, p53_in_gag(T201, T204, T203))

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
in1_in_ag(x1, x2)  =  in1_in_ag(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
in10_in_g(x1)  =  in10_in_g(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
p40_in_agg(x1, x2, x3)  =  p40_in_agg(x2, x3)
less42_in_ag(x1, x2)  =  less42_in_ag(x2)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
in1_in_gg(x1, x2)  =  in1_in_gg(x1, x2)
0  =  0
p40_in_ggg(x1, x2, x3)  =  p40_in_ggg(x1, x2, x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
p53_in_ggg(x1, x2, x3)  =  p53_in_ggg(x1, x2, x3)
less54_in_gg(x1, x2)  =  less54_in_gg(x1, x2)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
p53_in_gag(x1, x2, x3)  =  p53_in_gag(x1, x3)
less54_in_ga(x1, x2)  =  less54_in_ga(x1)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN1_IN_AG(x1, x2)  =  IN1_IN_AG(x2)
U11_AG(x1, x2, x3, x4)  =  U11_AG(x1, x2, x3, x4)
IN10_IN_G(x1)  =  IN10_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)
U2_G(x1, x2, x3, x4)  =  U2_G(x1, x2, x3, x4)
U12_AG(x1, x2, x3, x4, x5)  =  U12_AG(x2, x3, x4, x5)
P40_IN_AGG(x1, x2, x3)  =  P40_IN_AGG(x2, x3)
U5_AGG(x1, x2, x3, x4)  =  U5_AGG(x2, x3, x4)
LESS42_IN_AG(x1, x2)  =  LESS42_IN_AG(x2)
U3_AG(x1, x2, x3)  =  U3_AG(x2, x3)
U6_AGG(x1, x2, x3, x4)  =  U6_AGG(x2, x3, x4)
U7_AGG(x1, x2, x3, x4)  =  U7_AGG(x1, x2, x3, x4)
IN1_IN_GG(x1, x2)  =  IN1_IN_GG(x1, x2)
U11_GG(x1, x2, x3, x4)  =  U11_GG(x1, x2, x3, x4)
U12_GG(x1, x2, x3, x4, x5)  =  U12_GG(x1, x2, x3, x4, x5)
P40_IN_GGG(x1, x2, x3)  =  P40_IN_GGG(x1, x2, x3)
U5_GGG(x1, x2, x3, x4)  =  U5_GGG(x1, x2, x3, x4)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)
U6_GGG(x1, x2, x3, x4)  =  U6_GGG(x1, x2, x3, x4)
U7_GGG(x1, x2, x3, x4)  =  U7_GGG(x1, x2, x3, x4)
U13_GG(x1, x2, x3, x4, x5)  =  U13_GG(x1, x2, x3, x4, x5)
P53_IN_GGG(x1, x2, x3)  =  P53_IN_GGG(x1, x2, x3)
U8_GGG(x1, x2, x3, x4)  =  U8_GGG(x1, x2, x3, x4)
LESS54_IN_GG(x1, x2)  =  LESS54_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)
U9_GGG(x1, x2, x3, x4)  =  U9_GGG(x1, x2, x3, x4)
U10_GGG(x1, x2, x3, x4)  =  U10_GGG(x1, x2, x3, x4)
U14_GG(x1, x2, x3, x4)  =  U14_GG(x1, x2, x3, x4)
U15_GG(x1, x2, x3, x4, x5)  =  U15_GG(x1, x2, x3, x4, x5)
U16_GG(x1, x2, x3, x4, x5)  =  U16_GG(x1, x2, x3, x4, x5)
U13_AG(x1, x2, x3, x4, x5)  =  U13_AG(x2, x3, x4, x5)
P53_IN_GAG(x1, x2, x3)  =  P53_IN_GAG(x1, x3)
U8_GAG(x1, x2, x3, x4)  =  U8_GAG(x1, x3, x4)
LESS54_IN_GA(x1, x2)  =  LESS54_IN_GA(x1)
U4_GA(x1, x2, x3)  =  U4_GA(x1, x3)
U9_GAG(x1, x2, x3, x4)  =  U9_GAG(x1, x3, x4)
U10_GAG(x1, x2, x3, x4)  =  U10_GAG(x1, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x1, x2, x3, x4)
U15_AG(x1, x2, x3, x4, x5)  =  U15_AG(x2, x3, x4, x5)
U16_AG(x1, x2, x3, x4, x5)  =  U16_AG(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_AG(0, tree(s(T22), T15, T16)) → U11_AG(T22, T15, T16, in10_in_g(T15))
IN1_IN_AG(0, tree(s(T22), T15, T16)) → IN10_IN_G(T15)
IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))
U1_G(T49, T50, T51, lessc22_out_g(T49)) → U2_G(T49, T50, T51, in10_in_g(T50))
U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
IN1_IN_AG(s(T91), tree(s(T90), T15, T16)) → U12_AG(T91, T90, T15, T16, p40_in_agg(T91, T90, T15))
IN1_IN_AG(s(T91), tree(s(T90), T15, T16)) → P40_IN_AGG(T91, T90, T15)
P40_IN_AGG(T91, T90, T15) → U5_AGG(T91, T90, T15, less42_in_ag(T91, T90))
P40_IN_AGG(T91, T90, T15) → LESS42_IN_AG(T91, T90)
LESS42_IN_AG(s(T108), s(T107)) → U3_AG(T108, T107, less42_in_ag(T108, T107))
LESS42_IN_AG(s(T108), s(T107)) → LESS42_IN_AG(T108, T107)
P40_IN_AGG(T94, T90, T15) → U6_AGG(T94, T90, T15, lessc42_in_ag(T94, T90))
U6_AGG(T94, T90, T15, lessc42_out_ag(T94, T90)) → U7_AGG(T94, T90, T15, in1_in_gg(s(T94), T15))
U6_AGG(T94, T90, T15, lessc42_out_ag(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(0, tree(s(T22), T15, T16)) → U11_GG(T22, T15, T16, in10_in_g(T15))
IN1_IN_GG(0, tree(s(T22), T15, T16)) → IN10_IN_G(T15)
IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → U12_GG(T91, T90, T15, T16, p40_in_ggg(T91, T90, T15))
IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
P40_IN_GGG(T91, T90, T15) → U5_GGG(T91, T90, T15, less42_in_gg(T91, T90))
P40_IN_GGG(T91, T90, T15) → LESS42_IN_GG(T91, T90)
LESS42_IN_GG(s(T108), s(T107)) → U3_GG(T108, T107, less42_in_gg(T108, T107))
LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)
P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → U7_GGG(T94, T90, T15, in1_in_gg(s(T94), T15))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(T132, tree(T129, T130, T131)) → U13_GG(T132, T129, T130, T131, p53_in_ggg(T129, T132, T131))
IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
P53_IN_GGG(T129, T132, T131) → U8_GGG(T129, T132, T131, less54_in_gg(T129, T132))
P53_IN_GGG(T129, T132, T131) → LESS54_IN_GG(T129, T132)
LESS54_IN_GG(s(T147), s(T149)) → U4_GG(T147, T149, less54_in_gg(T147, T149))
LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)
P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → U10_GGG(T129, T135, T131, in1_in_gg(T135, T131))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)
IN1_IN_GG(0, tree(s(T171), T164, T165)) → U14_GG(T171, T164, T165, in10_in_g(T164))
IN1_IN_GG(s(T186), tree(s(T185), T164, T165)) → U15_GG(T186, T185, T164, T165, p40_in_ggg(T186, T185, T164))
IN1_IN_GG(T204, tree(T201, T202, T203)) → U16_GG(T204, T201, T202, T203, p53_in_ggg(T201, T204, T203))
IN1_IN_AG(T132, tree(T129, T130, T131)) → U13_AG(T132, T129, T130, T131, p53_in_gag(T129, T132, T131))
IN1_IN_AG(T132, tree(T129, T130, T131)) → P53_IN_GAG(T129, T132, T131)
P53_IN_GAG(T129, T132, T131) → U8_GAG(T129, T132, T131, less54_in_ga(T129, T132))
P53_IN_GAG(T129, T132, T131) → LESS54_IN_GA(T129, T132)
LESS54_IN_GA(s(T147), s(T149)) → U4_GA(T147, T149, less54_in_ga(T147, T149))
LESS54_IN_GA(s(T147), s(T149)) → LESS54_IN_GA(T147, T149)
P53_IN_GAG(T129, T135, T131) → U9_GAG(T129, T135, T131, lessc54_in_ga(T129, T135))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → U10_GAG(T129, T135, T131, in1_in_ag(T135, T131))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → IN1_IN_AG(T135, T131)
IN1_IN_AG(0, tree(s(T171), T164, T165)) → U14_AG(T171, T164, T165, in10_in_g(T164))
IN1_IN_AG(s(T186), tree(s(T185), T164, T165)) → U15_AG(T186, T185, T164, T165, p40_in_agg(T186, T185, T164))
IN1_IN_AG(T204, tree(T201, T202, T203)) → U16_AG(T204, T201, T202, T203, p53_in_gag(T201, T204, T203))

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
in1_in_ag(x1, x2)  =  in1_in_ag(x2)
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
in10_in_g(x1)  =  in10_in_g(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
p40_in_agg(x1, x2, x3)  =  p40_in_agg(x2, x3)
less42_in_ag(x1, x2)  =  less42_in_ag(x2)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
in1_in_gg(x1, x2)  =  in1_in_gg(x1, x2)
0  =  0
p40_in_ggg(x1, x2, x3)  =  p40_in_ggg(x1, x2, x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
p53_in_ggg(x1, x2, x3)  =  p53_in_ggg(x1, x2, x3)
less54_in_gg(x1, x2)  =  less54_in_gg(x1, x2)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
p53_in_gag(x1, x2, x3)  =  p53_in_gag(x1, x3)
less54_in_ga(x1, x2)  =  less54_in_ga(x1)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN1_IN_AG(x1, x2)  =  IN1_IN_AG(x2)
U11_AG(x1, x2, x3, x4)  =  U11_AG(x1, x2, x3, x4)
IN10_IN_G(x1)  =  IN10_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)
U2_G(x1, x2, x3, x4)  =  U2_G(x1, x2, x3, x4)
U12_AG(x1, x2, x3, x4, x5)  =  U12_AG(x2, x3, x4, x5)
P40_IN_AGG(x1, x2, x3)  =  P40_IN_AGG(x2, x3)
U5_AGG(x1, x2, x3, x4)  =  U5_AGG(x2, x3, x4)
LESS42_IN_AG(x1, x2)  =  LESS42_IN_AG(x2)
U3_AG(x1, x2, x3)  =  U3_AG(x2, x3)
U6_AGG(x1, x2, x3, x4)  =  U6_AGG(x2, x3, x4)
U7_AGG(x1, x2, x3, x4)  =  U7_AGG(x1, x2, x3, x4)
IN1_IN_GG(x1, x2)  =  IN1_IN_GG(x1, x2)
U11_GG(x1, x2, x3, x4)  =  U11_GG(x1, x2, x3, x4)
U12_GG(x1, x2, x3, x4, x5)  =  U12_GG(x1, x2, x3, x4, x5)
P40_IN_GGG(x1, x2, x3)  =  P40_IN_GGG(x1, x2, x3)
U5_GGG(x1, x2, x3, x4)  =  U5_GGG(x1, x2, x3, x4)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x1, x2, x3)
U6_GGG(x1, x2, x3, x4)  =  U6_GGG(x1, x2, x3, x4)
U7_GGG(x1, x2, x3, x4)  =  U7_GGG(x1, x2, x3, x4)
U13_GG(x1, x2, x3, x4, x5)  =  U13_GG(x1, x2, x3, x4, x5)
P53_IN_GGG(x1, x2, x3)  =  P53_IN_GGG(x1, x2, x3)
U8_GGG(x1, x2, x3, x4)  =  U8_GGG(x1, x2, x3, x4)
LESS54_IN_GG(x1, x2)  =  LESS54_IN_GG(x1, x2)
U4_GG(x1, x2, x3)  =  U4_GG(x1, x2, x3)
U9_GGG(x1, x2, x3, x4)  =  U9_GGG(x1, x2, x3, x4)
U10_GGG(x1, x2, x3, x4)  =  U10_GGG(x1, x2, x3, x4)
U14_GG(x1, x2, x3, x4)  =  U14_GG(x1, x2, x3, x4)
U15_GG(x1, x2, x3, x4, x5)  =  U15_GG(x1, x2, x3, x4, x5)
U16_GG(x1, x2, x3, x4, x5)  =  U16_GG(x1, x2, x3, x4, x5)
U13_AG(x1, x2, x3, x4, x5)  =  U13_AG(x2, x3, x4, x5)
P53_IN_GAG(x1, x2, x3)  =  P53_IN_GAG(x1, x3)
U8_GAG(x1, x2, x3, x4)  =  U8_GAG(x1, x3, x4)
LESS54_IN_GA(x1, x2)  =  LESS54_IN_GA(x1)
U4_GA(x1, x2, x3)  =  U4_GA(x1, x3)
U9_GAG(x1, x2, x3, x4)  =  U9_GAG(x1, x3, x4)
U10_GAG(x1, x2, x3, x4)  =  U10_GAG(x1, x3, x4)
U14_AG(x1, x2, x3, x4)  =  U14_AG(x1, x2, x3, x4)
U15_AG(x1, x2, x3, x4, x5)  =  U15_AG(x2, x3, x4, x5)
U16_AG(x1, x2, x3, x4, x5)  =  U16_AG(x2, x3, x4, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 7 SCCs with 34 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS54_IN_GA(s(T147), s(T149)) → LESS54_IN_GA(T147, T149)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
LESS54_IN_GA(x1, x2)  =  LESS54_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS54_IN_GA(s(T147), s(T149)) → LESS54_IN_GA(T147, T149)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS54_IN_GA(x1, x2)  =  LESS54_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS54_IN_GA(s(T147)) → LESS54_IN_GA(T147)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS54_IN_GA(s(T147)) → LESS54_IN_GA(T147)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
LESS54_IN_GG(x1, x2)  =  LESS54_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS54_IN_GG(s(T147), s(T149)) → LESS54_IN_GG(T147, T149)
    The graph contains the following edges 1 > 1, 2 > 2

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS42_IN_GG(s(T108), s(T107)) → LESS42_IN_GG(T108, T107)
    The graph contains the following edges 1 > 1, 2 > 2

(29) YES

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_AG(s(T108), s(T107)) → LESS42_IN_AG(T108, T107)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
LESS42_IN_AG(x1, x2)  =  LESS42_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_AG(s(T108), s(T107)) → LESS42_IN_AG(T108, T107)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS42_IN_AG(x1, x2)  =  LESS42_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS42_IN_AG(s(T107)) → LESS42_IN_AG(T107)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(35) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS42_IN_AG(s(T107)) → LESS42_IN_AG(T107)
    The graph contains the following edges 1 > 1

(36) YES

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN10_IN_G(x1)  =  IN10_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))

The set Q consists of the following terms:

lessc22_in_g(x0)

We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • IN10_IN_G(tree(T49, T50, T51)) → U1_G(T49, T50, T51, lessc22_in_g(T49))
    The graph contains the following edges 1 > 1, 1 > 2, 1 > 3

  • U1_G(T49, T50, T51, lessc22_out_g(T49)) → IN10_IN_G(T50)
    The graph contains the following edges 2 >= 1

(43) YES

(44) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN1_IN_GG(x1, x2)  =  IN1_IN_GG(x1, x2)
P40_IN_GGG(x1, x2, x3)  =  P40_IN_GGG(x1, x2, x3)
U6_GGG(x1, x2, x3, x4)  =  U6_GGG(x1, x2, x3, x4)
P53_IN_GGG(x1, x2, x3)  =  P53_IN_GGG(x1, x2, x3)
U9_GGG(x1, x2, x3, x4)  =  U9_GGG(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(45) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(46) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)

The TRS R consists of the following rules:

lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(47) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)

The TRS R consists of the following rules:

lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))

The set Q consists of the following terms:

lessc42_in_gg(x0, x1)
lessc54_in_gg(x0, x1)
U26_gg(x0, x1, x2)
U27_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(49) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P40_IN_GGG(T94, T90, T15) → U6_GGG(T94, T90, T15, lessc42_in_gg(T94, T90))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

  • U6_GGG(T94, T90, T15, lessc42_out_gg(T94, T90)) → IN1_IN_GG(s(T94), T15)
    The graph contains the following edges 3 >= 2

  • U9_GGG(T129, T135, T131, lessc54_out_gg(T129, T135)) → IN1_IN_GG(T135, T131)
    The graph contains the following edges 2 >= 1, 4 > 1, 3 >= 2

  • IN1_IN_GG(s(T91), tree(s(T90), T15, T16)) → P40_IN_GGG(T91, T90, T15)
    The graph contains the following edges 1 > 1, 2 > 2, 2 > 3

  • IN1_IN_GG(T132, tree(T129, T130, T131)) → P53_IN_GGG(T129, T132, T131)
    The graph contains the following edges 2 > 1, 1 >= 2, 2 > 3

  • P53_IN_GGG(T129, T135, T131) → U9_GGG(T129, T135, T131, lessc54_in_gg(T129, T135))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

(50) YES

(51) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_AG(T132, tree(T129, T130, T131)) → P53_IN_GAG(T129, T132, T131)
P53_IN_GAG(T129, T135, T131) → U9_GAG(T129, T135, T131, lessc54_in_ga(T129, T135))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → IN1_IN_AG(T135, T131)

The TRS R consists of the following rules:

lessc22_in_g(s(T60)) → lessc22_out_g(s(T60))
lessc42_in_ag(0, s(T101)) → lessc42_out_ag(0, s(T101))
lessc42_in_ag(s(T108), s(T107)) → U26_ag(T108, T107, lessc42_in_ag(T108, T107))
U26_ag(T108, T107, lessc42_out_ag(T108, T107)) → lessc42_out_ag(s(T108), s(T107))
lessc42_in_gg(0, s(T101)) → lessc42_out_gg(0, s(T101))
lessc42_in_gg(s(T108), s(T107)) → U26_gg(T108, T107, lessc42_in_gg(T108, T107))
U26_gg(T108, T107, lessc42_out_gg(T108, T107)) → lessc42_out_gg(s(T108), s(T107))
lessc54_in_gg(0, s(T142)) → lessc54_out_gg(0, s(T142))
lessc54_in_gg(s(T147), s(T149)) → U27_gg(T147, T149, lessc54_in_gg(T147, T149))
U27_gg(T147, T149, lessc54_out_gg(T147, T149)) → lessc54_out_gg(s(T147), s(T149))
lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
lessc22_in_g(x1)  =  lessc22_in_g(x1)
lessc22_out_g(x1)  =  lessc22_out_g(x1)
lessc42_in_ag(x1, x2)  =  lessc42_in_ag(x2)
lessc42_out_ag(x1, x2)  =  lessc42_out_ag(x1, x2)
U26_ag(x1, x2, x3)  =  U26_ag(x2, x3)
0  =  0
lessc42_in_gg(x1, x2)  =  lessc42_in_gg(x1, x2)
lessc42_out_gg(x1, x2)  =  lessc42_out_gg(x1, x2)
U26_gg(x1, x2, x3)  =  U26_gg(x1, x2, x3)
lessc54_in_gg(x1, x2)  =  lessc54_in_gg(x1, x2)
lessc54_out_gg(x1, x2)  =  lessc54_out_gg(x1, x2)
U27_gg(x1, x2, x3)  =  U27_gg(x1, x2, x3)
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN1_IN_AG(x1, x2)  =  IN1_IN_AG(x2)
P53_IN_GAG(x1, x2, x3)  =  P53_IN_GAG(x1, x3)
U9_GAG(x1, x2, x3, x4)  =  U9_GAG(x1, x3, x4)

We have to consider all (P,R,Pi)-chains

(52) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(53) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_AG(T132, tree(T129, T130, T131)) → P53_IN_GAG(T129, T132, T131)
P53_IN_GAG(T129, T135, T131) → U9_GAG(T129, T135, T131, lessc54_in_ga(T129, T135))
U9_GAG(T129, T135, T131, lessc54_out_ga(T129, T135)) → IN1_IN_AG(T135, T131)

The TRS R consists of the following rules:

lessc54_in_ga(0, s(T142)) → lessc54_out_ga(0, s(T142))
lessc54_in_ga(s(T147), s(T149)) → U27_ga(T147, T149, lessc54_in_ga(T147, T149))
U27_ga(T147, T149, lessc54_out_ga(T147, T149)) → lessc54_out_ga(s(T147), s(T149))

The argument filtering Pi contains the following mapping:
tree(x1, x2, x3)  =  tree(x1, x2, x3)
s(x1)  =  s(x1)
0  =  0
lessc54_in_ga(x1, x2)  =  lessc54_in_ga(x1)
lessc54_out_ga(x1, x2)  =  lessc54_out_ga(x1)
U27_ga(x1, x2, x3)  =  U27_ga(x1, x3)
IN1_IN_AG(x1, x2)  =  IN1_IN_AG(x2)
P53_IN_GAG(x1, x2, x3)  =  P53_IN_GAG(x1, x3)
U9_GAG(x1, x2, x3, x4)  =  U9_GAG(x1, x3, x4)

We have to consider all (P,R,Pi)-chains

(54) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_AG(tree(T129, T130, T131)) → P53_IN_GAG(T129, T131)
P53_IN_GAG(T129, T131) → U9_GAG(T129, T131, lessc54_in_ga(T129))
U9_GAG(T129, T131, lessc54_out_ga(T129)) → IN1_IN_AG(T131)

The TRS R consists of the following rules:

lessc54_in_ga(0) → lessc54_out_ga(0)
lessc54_in_ga(s(T147)) → U27_ga(T147, lessc54_in_ga(T147))
U27_ga(T147, lessc54_out_ga(T147)) → lessc54_out_ga(s(T147))

The set Q consists of the following terms:

lessc54_in_ga(x0)
U27_ga(x0, x1)

We have to consider all (P,Q,R)-chains.

(56) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • P53_IN_GAG(T129, T131) → U9_GAG(T129, T131, lessc54_in_ga(T129))
    The graph contains the following edges 1 >= 1, 2 >= 2

  • U9_GAG(T129, T131, lessc54_out_ga(T129)) → IN1_IN_AG(T131)
    The graph contains the following edges 2 >= 1

  • IN1_IN_AG(tree(T129, T130, T131)) → P53_IN_GAG(T129, T131)
    The graph contains the following edges 1 > 1, 1 > 2

(57) YES