(0) Obligation:

Clauses:

in(X, tree(X, X1, X2)).
in(X, tree(Y, Left, X3)) :- ','(less(X, Y), in(X, Left)).
in(X, tree(Y, X4, Right)) :- ','(less(Y, X), in(X, Right)).
less(0, s(X5)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

in(g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

in11(tree(T54, T58, T53)) :- ','(lessc23(T54), in11(T58)).
in11(tree(T79, T77, T82)) :- ','(lessc34(T79), in11(T82)).
less43(s(T115), s(T117)) :- less43(T115, T117).
less56(s(T156), s(T155)) :- less56(T156, T155).
p41(T97, T99, T100) :- less43(T97, T99).
p41(T97, T99, T103) :- ','(lessc43(T97, T99), in1(s(T97), T103)).
p66(0, s(T179), T180) :- in1(s(T179), T180).
p66(s(T193), s(T192), T194) :- p73(T193, T192, T194).
p73(T193, T192, T194) :- less56(T193, T192).
p73(T193, T192, T197) :- ','(lessc56(T193, T192), in1(s(T192), T197)).
in1(0, tree(s(T23), T24, T16)) :- in11(T24).
in1(s(T97), tree(s(T99), T100, T16)) :- p41(T97, T99, T100).
in1(T134, tree(T138, T136, T139)) :- less56(T138, T134).
in1(T134, tree(T138, T136, T142)) :- ','(lessc56(T138, T134), in1(T134, T142)).
in1(T169, tree(T173, T171, T174)) :- p66(T173, T169, T174).
in1(0, tree(s(T220), T221, T213)) :- in11(T221).
in1(s(T234), tree(s(T236), T237, T213)) :- p41(T234, T236, T237).
in1(T248, tree(T252, T250, T253)) :- p66(T252, T248, T253).
in1(s(T270), tree(0, T262, T271)) :- in1(s(T270), T271).
in1(s(T283), tree(s(T284), T262, T285)) :- p73(T284, T283, T285).

Clauses:

inc11(tree(0, T37, T38)).
inc11(tree(T54, T58, T53)) :- ','(lessc23(T54), inc11(T58)).
inc11(tree(T79, T77, T82)) :- ','(lessc34(T79), inc11(T82)).
inc1(T6, tree(T6, T7, T8)).
inc1(0, tree(s(T23), T24, T16)) :- inc11(T24).
inc1(s(T97), tree(s(T99), T100, T16)) :- qc41(T97, T99, T100).
inc1(T134, tree(T138, T136, T142)) :- ','(lessc56(T138, T134), inc1(T134, T142)).
inc1(T169, tree(T173, T171, T174)) :- qc66(T173, T169, T174).
inc1(0, tree(s(T220), T221, T213)) :- inc11(T221).
inc1(s(T234), tree(s(T236), T237, T213)) :- qc41(T234, T236, T237).
inc1(T248, tree(T252, T250, T253)) :- qc66(T252, T248, T253).
inc1(s(T270), tree(0, T262, T271)) :- inc1(s(T270), T271).
inc1(s(T283), tree(s(T284), T262, T285)) :- qc73(T284, T283, T285).
lessc43(0, s(T110)).
lessc43(s(T115), s(T117)) :- lessc43(T115, T117).
lessc56(0, s(T149)).
lessc56(s(T156), s(T155)) :- lessc56(T156, T155).
qc41(T97, T99, T103) :- ','(lessc43(T97, T99), inc1(s(T97), T103)).
qc66(0, s(T179), T180) :- inc1(s(T179), T180).
qc66(s(T193), s(T192), T194) :- qc73(T193, T192, T194).
qc73(T193, T192, T197) :- ','(lessc56(T193, T192), inc1(s(T192), T197)).
lessc23(s(T65)).

Afs:

in1(x1, x2)  =  in1(x1)

(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)

Deleted triples and predicates having undefined goals [UNKNOWN].

(4) Obligation:

Triples:

in11(tree(T54, T58, T53)) :- ','(lessc23(T54), in11(T58)).
less43(s(T115), s(T117)) :- less43(T115, T117).
less56(s(T156), s(T155)) :- less56(T156, T155).
p41(T97, T99, T100) :- less43(T97, T99).
p41(T97, T99, T103) :- ','(lessc43(T97, T99), in1(s(T97), T103)).
p66(0, s(T179), T180) :- in1(s(T179), T180).
p66(s(T193), s(T192), T194) :- p73(T193, T192, T194).
p73(T193, T192, T194) :- less56(T193, T192).
p73(T193, T192, T197) :- ','(lessc56(T193, T192), in1(s(T192), T197)).
in1(0, tree(s(T23), T24, T16)) :- in11(T24).
in1(s(T97), tree(s(T99), T100, T16)) :- p41(T97, T99, T100).
in1(T134, tree(T138, T136, T139)) :- less56(T138, T134).
in1(T134, tree(T138, T136, T142)) :- ','(lessc56(T138, T134), in1(T134, T142)).
in1(T169, tree(T173, T171, T174)) :- p66(T173, T169, T174).
in1(0, tree(s(T220), T221, T213)) :- in11(T221).
in1(s(T234), tree(s(T236), T237, T213)) :- p41(T234, T236, T237).
in1(T248, tree(T252, T250, T253)) :- p66(T252, T248, T253).
in1(s(T270), tree(0, T262, T271)) :- in1(s(T270), T271).
in1(s(T283), tree(s(T284), T262, T285)) :- p73(T284, T283, T285).

Clauses:

inc11(tree(0, T37, T38)).
inc11(tree(T54, T58, T53)) :- ','(lessc23(T54), inc11(T58)).
inc1(T6, tree(T6, T7, T8)).
inc1(0, tree(s(T23), T24, T16)) :- inc11(T24).
inc1(s(T97), tree(s(T99), T100, T16)) :- qc41(T97, T99, T100).
inc1(T134, tree(T138, T136, T142)) :- ','(lessc56(T138, T134), inc1(T134, T142)).
inc1(T169, tree(T173, T171, T174)) :- qc66(T173, T169, T174).
inc1(0, tree(s(T220), T221, T213)) :- inc11(T221).
inc1(s(T234), tree(s(T236), T237, T213)) :- qc41(T234, T236, T237).
inc1(T248, tree(T252, T250, T253)) :- qc66(T252, T248, T253).
inc1(s(T270), tree(0, T262, T271)) :- inc1(s(T270), T271).
inc1(s(T283), tree(s(T284), T262, T285)) :- qc73(T284, T283, T285).
lessc43(0, s(T110)).
lessc43(s(T115), s(T117)) :- lessc43(T115, T117).
lessc56(0, s(T149)).
lessc56(s(T156), s(T155)) :- lessc56(T156, T155).
qc41(T97, T99, T103) :- ','(lessc43(T97, T99), inc1(s(T97), T103)).
qc66(0, s(T179), T180) :- inc1(s(T179), T180).
qc66(s(T193), s(T192), T194) :- qc73(T193, T192, T194).
qc73(T193, T192, T197) :- ','(lessc56(T193, T192), inc1(s(T192), T197)).
lessc23(s(T65)).

Afs:

in1(x1, x2)  =  in1(x1)

(5) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
in1_in: (b,f)
in11_in: (f)
p41_in: (b,f,f)
less43_in: (b,f)
lessc43_in: (b,f)
less56_in: (f,b)
lessc56_in: (f,b)
p66_in: (f,b,f)
p73_in: (f,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(0, tree(s(T23), T24, T16)) → U13_GA(T23, T24, T16, in11_in_a(T24))
IN1_IN_GA(0, tree(s(T23), T24, T16)) → IN11_IN_A(T24)
IN11_IN_A(tree(T54, T58, T53)) → U1_A(T54, T58, T53, lessc23_in_a(T54))
U1_A(T54, T58, T53, lessc23_out_a(T54)) → U2_A(T54, T58, T53, in11_in_a(T58))
U1_A(T54, T58, T53, lessc23_out_a(T54)) → IN11_IN_A(T58)
IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → U14_GA(T97, T99, T100, T16, p41_in_gaa(T97, T99, T100))
IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → P41_IN_GAA(T97, T99, T100)
P41_IN_GAA(T97, T99, T100) → U5_GAA(T97, T99, T100, less43_in_ga(T97, T99))
P41_IN_GAA(T97, T99, T100) → LESS43_IN_GA(T97, T99)
LESS43_IN_GA(s(T115), s(T117)) → U3_GA(T115, T117, less43_in_ga(T115, T117))
LESS43_IN_GA(s(T115), s(T117)) → LESS43_IN_GA(T115, T117)
P41_IN_GAA(T97, T99, T103) → U6_GAA(T97, T99, T103, lessc43_in_ga(T97, T99))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → U7_GAA(T97, T99, T103, in1_in_ga(s(T97), T103))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → IN1_IN_GA(s(T97), T103)
IN1_IN_GA(T134, tree(T138, T136, T139)) → U15_GA(T134, T138, T136, T139, less56_in_ag(T138, T134))
IN1_IN_GA(T134, tree(T138, T136, T139)) → LESS56_IN_AG(T138, T134)
LESS56_IN_AG(s(T156), s(T155)) → U4_AG(T156, T155, less56_in_ag(T156, T155))
LESS56_IN_AG(s(T156), s(T155)) → LESS56_IN_AG(T156, T155)
IN1_IN_GA(T134, tree(T138, T136, T142)) → U16_GA(T134, T138, T136, T142, lessc56_in_ag(T138, T134))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → U17_GA(T134, T138, T136, T142, in1_in_ga(T134, T142))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134, T142)
IN1_IN_GA(T169, tree(T173, T171, T174)) → U18_GA(T169, T173, T171, T174, p66_in_aga(T173, T169, T174))
IN1_IN_GA(T169, tree(T173, T171, T174)) → P66_IN_AGA(T173, T169, T174)
P66_IN_AGA(0, s(T179), T180) → U8_AGA(T179, T180, in1_in_ga(s(T179), T180))
P66_IN_AGA(0, s(T179), T180) → IN1_IN_GA(s(T179), T180)
IN1_IN_GA(0, tree(s(T220), T221, T213)) → U19_GA(T220, T221, T213, in11_in_a(T221))
IN1_IN_GA(s(T234), tree(s(T236), T237, T213)) → U20_GA(T234, T236, T237, T213, p41_in_gaa(T234, T236, T237))
IN1_IN_GA(T248, tree(T252, T250, T253)) → U21_GA(T248, T252, T250, T253, p66_in_aga(T252, T248, T253))
P66_IN_AGA(s(T193), s(T192), T194) → U9_AGA(T193, T192, T194, p73_in_aga(T193, T192, T194))
P66_IN_AGA(s(T193), s(T192), T194) → P73_IN_AGA(T193, T192, T194)
P73_IN_AGA(T193, T192, T194) → U10_AGA(T193, T192, T194, less56_in_ag(T193, T192))
P73_IN_AGA(T193, T192, T194) → LESS56_IN_AG(T193, T192)
P73_IN_AGA(T193, T192, T197) → U11_AGA(T193, T192, T197, lessc56_in_ag(T193, T192))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → U12_AGA(T193, T192, T197, in1_in_ga(s(T192), T197))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192), T197)
IN1_IN_GA(s(T270), tree(0, T262, T271)) → U22_GA(T270, T262, T271, in1_in_ga(s(T270), T271))
IN1_IN_GA(s(T270), tree(0, T262, T271)) → IN1_IN_GA(s(T270), T271)
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → U23_GA(T283, T284, T262, T285, p73_in_aga(T284, T283, T285))
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → P73_IN_AGA(T284, T283, T285)

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
in1_in_ga(x1, x2)  =  in1_in_ga(x1)
0  =  0
in11_in_a(x1)  =  in11_in_a
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
p41_in_gaa(x1, x2, x3)  =  p41_in_gaa(x1)
less43_in_ga(x1, x2)  =  less43_in_ga(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
less56_in_ag(x1, x2)  =  less56_in_ag(x2)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
p66_in_aga(x1, x2, x3)  =  p66_in_aga(x2)
p73_in_aga(x1, x2, x3)  =  p73_in_aga(x2)
IN1_IN_GA(x1, x2)  =  IN1_IN_GA(x1)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x4)
IN11_IN_A(x1)  =  IN11_IN_A
U1_A(x1, x2, x3, x4)  =  U1_A(x4)
U2_A(x1, x2, x3, x4)  =  U2_A(x4)
U14_GA(x1, x2, x3, x4, x5)  =  U14_GA(x1, x5)
P41_IN_GAA(x1, x2, x3)  =  P41_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
LESS43_IN_GA(x1, x2)  =  LESS43_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U15_GA(x1, x2, x3, x4, x5)  =  U15_GA(x1, x5)
LESS56_IN_AG(x1, x2)  =  LESS56_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x2, x3)
U16_GA(x1, x2, x3, x4, x5)  =  U16_GA(x1, x5)
U17_GA(x1, x2, x3, x4, x5)  =  U17_GA(x1, x5)
U18_GA(x1, x2, x3, x4, x5)  =  U18_GA(x1, x5)
P66_IN_AGA(x1, x2, x3)  =  P66_IN_AGA(x2)
U8_AGA(x1, x2, x3)  =  U8_AGA(x1, x3)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x4)
U20_GA(x1, x2, x3, x4, x5)  =  U20_GA(x1, x5)
U21_GA(x1, x2, x3, x4, x5)  =  U21_GA(x1, x5)
U9_AGA(x1, x2, x3, x4)  =  U9_AGA(x2, x4)
P73_IN_AGA(x1, x2, x3)  =  P73_IN_AGA(x2)
U10_AGA(x1, x2, x3, x4)  =  U10_AGA(x2, x4)
U11_AGA(x1, x2, x3, x4)  =  U11_AGA(x2, x4)
U12_AGA(x1, x2, x3, x4)  =  U12_AGA(x1, x2, x4)
U22_GA(x1, x2, x3, x4)  =  U22_GA(x1, x4)
U23_GA(x1, x2, x3, x4, x5)  =  U23_GA(x1, x5)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(0, tree(s(T23), T24, T16)) → U13_GA(T23, T24, T16, in11_in_a(T24))
IN1_IN_GA(0, tree(s(T23), T24, T16)) → IN11_IN_A(T24)
IN11_IN_A(tree(T54, T58, T53)) → U1_A(T54, T58, T53, lessc23_in_a(T54))
U1_A(T54, T58, T53, lessc23_out_a(T54)) → U2_A(T54, T58, T53, in11_in_a(T58))
U1_A(T54, T58, T53, lessc23_out_a(T54)) → IN11_IN_A(T58)
IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → U14_GA(T97, T99, T100, T16, p41_in_gaa(T97, T99, T100))
IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → P41_IN_GAA(T97, T99, T100)
P41_IN_GAA(T97, T99, T100) → U5_GAA(T97, T99, T100, less43_in_ga(T97, T99))
P41_IN_GAA(T97, T99, T100) → LESS43_IN_GA(T97, T99)
LESS43_IN_GA(s(T115), s(T117)) → U3_GA(T115, T117, less43_in_ga(T115, T117))
LESS43_IN_GA(s(T115), s(T117)) → LESS43_IN_GA(T115, T117)
P41_IN_GAA(T97, T99, T103) → U6_GAA(T97, T99, T103, lessc43_in_ga(T97, T99))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → U7_GAA(T97, T99, T103, in1_in_ga(s(T97), T103))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → IN1_IN_GA(s(T97), T103)
IN1_IN_GA(T134, tree(T138, T136, T139)) → U15_GA(T134, T138, T136, T139, less56_in_ag(T138, T134))
IN1_IN_GA(T134, tree(T138, T136, T139)) → LESS56_IN_AG(T138, T134)
LESS56_IN_AG(s(T156), s(T155)) → U4_AG(T156, T155, less56_in_ag(T156, T155))
LESS56_IN_AG(s(T156), s(T155)) → LESS56_IN_AG(T156, T155)
IN1_IN_GA(T134, tree(T138, T136, T142)) → U16_GA(T134, T138, T136, T142, lessc56_in_ag(T138, T134))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → U17_GA(T134, T138, T136, T142, in1_in_ga(T134, T142))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134, T142)
IN1_IN_GA(T169, tree(T173, T171, T174)) → U18_GA(T169, T173, T171, T174, p66_in_aga(T173, T169, T174))
IN1_IN_GA(T169, tree(T173, T171, T174)) → P66_IN_AGA(T173, T169, T174)
P66_IN_AGA(0, s(T179), T180) → U8_AGA(T179, T180, in1_in_ga(s(T179), T180))
P66_IN_AGA(0, s(T179), T180) → IN1_IN_GA(s(T179), T180)
IN1_IN_GA(0, tree(s(T220), T221, T213)) → U19_GA(T220, T221, T213, in11_in_a(T221))
IN1_IN_GA(s(T234), tree(s(T236), T237, T213)) → U20_GA(T234, T236, T237, T213, p41_in_gaa(T234, T236, T237))
IN1_IN_GA(T248, tree(T252, T250, T253)) → U21_GA(T248, T252, T250, T253, p66_in_aga(T252, T248, T253))
P66_IN_AGA(s(T193), s(T192), T194) → U9_AGA(T193, T192, T194, p73_in_aga(T193, T192, T194))
P66_IN_AGA(s(T193), s(T192), T194) → P73_IN_AGA(T193, T192, T194)
P73_IN_AGA(T193, T192, T194) → U10_AGA(T193, T192, T194, less56_in_ag(T193, T192))
P73_IN_AGA(T193, T192, T194) → LESS56_IN_AG(T193, T192)
P73_IN_AGA(T193, T192, T197) → U11_AGA(T193, T192, T197, lessc56_in_ag(T193, T192))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → U12_AGA(T193, T192, T197, in1_in_ga(s(T192), T197))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192), T197)
IN1_IN_GA(s(T270), tree(0, T262, T271)) → U22_GA(T270, T262, T271, in1_in_ga(s(T270), T271))
IN1_IN_GA(s(T270), tree(0, T262, T271)) → IN1_IN_GA(s(T270), T271)
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → U23_GA(T283, T284, T262, T285, p73_in_aga(T284, T283, T285))
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → P73_IN_AGA(T284, T283, T285)

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
in1_in_ga(x1, x2)  =  in1_in_ga(x1)
0  =  0
in11_in_a(x1)  =  in11_in_a
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
p41_in_gaa(x1, x2, x3)  =  p41_in_gaa(x1)
less43_in_ga(x1, x2)  =  less43_in_ga(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
less56_in_ag(x1, x2)  =  less56_in_ag(x2)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
p66_in_aga(x1, x2, x3)  =  p66_in_aga(x2)
p73_in_aga(x1, x2, x3)  =  p73_in_aga(x2)
IN1_IN_GA(x1, x2)  =  IN1_IN_GA(x1)
U13_GA(x1, x2, x3, x4)  =  U13_GA(x4)
IN11_IN_A(x1)  =  IN11_IN_A
U1_A(x1, x2, x3, x4)  =  U1_A(x4)
U2_A(x1, x2, x3, x4)  =  U2_A(x4)
U14_GA(x1, x2, x3, x4, x5)  =  U14_GA(x1, x5)
P41_IN_GAA(x1, x2, x3)  =  P41_IN_GAA(x1)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
LESS43_IN_GA(x1, x2)  =  LESS43_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x1, x3)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U7_GAA(x1, x2, x3, x4)  =  U7_GAA(x1, x4)
U15_GA(x1, x2, x3, x4, x5)  =  U15_GA(x1, x5)
LESS56_IN_AG(x1, x2)  =  LESS56_IN_AG(x2)
U4_AG(x1, x2, x3)  =  U4_AG(x2, x3)
U16_GA(x1, x2, x3, x4, x5)  =  U16_GA(x1, x5)
U17_GA(x1, x2, x3, x4, x5)  =  U17_GA(x1, x5)
U18_GA(x1, x2, x3, x4, x5)  =  U18_GA(x1, x5)
P66_IN_AGA(x1, x2, x3)  =  P66_IN_AGA(x2)
U8_AGA(x1, x2, x3)  =  U8_AGA(x1, x3)
U19_GA(x1, x2, x3, x4)  =  U19_GA(x4)
U20_GA(x1, x2, x3, x4, x5)  =  U20_GA(x1, x5)
U21_GA(x1, x2, x3, x4, x5)  =  U21_GA(x1, x5)
U9_AGA(x1, x2, x3, x4)  =  U9_AGA(x2, x4)
P73_IN_AGA(x1, x2, x3)  =  P73_IN_AGA(x2)
U10_AGA(x1, x2, x3, x4)  =  U10_AGA(x2, x4)
U11_AGA(x1, x2, x3, x4)  =  U11_AGA(x2, x4)
U12_AGA(x1, x2, x3, x4)  =  U12_AGA(x1, x2, x4)
U22_GA(x1, x2, x3, x4)  =  U22_GA(x1, x4)
U23_GA(x1, x2, x3, x4, x5)  =  U23_GA(x1, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 23 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS56_IN_AG(s(T156), s(T155)) → LESS56_IN_AG(T156, T155)

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
0  =  0
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
LESS56_IN_AG(x1, x2)  =  LESS56_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS56_IN_AG(s(T156), s(T155)) → LESS56_IN_AG(T156, T155)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS56_IN_AG(x1, x2)  =  LESS56_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS56_IN_AG(s(T155)) → LESS56_IN_AG(T155)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS56_IN_AG(s(T155)) → LESS56_IN_AG(T155)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS43_IN_GA(s(T115), s(T117)) → LESS43_IN_GA(T115, T117)

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
0  =  0
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
LESS43_IN_GA(x1, x2)  =  LESS43_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS43_IN_GA(s(T115), s(T117)) → LESS43_IN_GA(T115, T117)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS43_IN_GA(x1, x2)  =  LESS43_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS43_IN_GA(s(T115)) → LESS43_IN_GA(T115)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS43_IN_GA(s(T115)) → LESS43_IN_GA(T115)
    The graph contains the following edges 1 > 1

(22) YES

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_A(T54, T58, T53, lessc23_out_a(T54)) → IN11_IN_A(T58)
IN11_IN_A(tree(T54, T58, T53)) → U1_A(T54, T58, T53, lessc23_in_a(T54))

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
0  =  0
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
IN11_IN_A(x1)  =  IN11_IN_A
U1_A(x1, x2, x3, x4)  =  U1_A(x4)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_A(T54, T58, T53, lessc23_out_a(T54)) → IN11_IN_A(T58)
IN11_IN_A(tree(T54, T58, T53)) → U1_A(T54, T58, T53, lessc23_in_a(T54))

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))

The argument filtering Pi contains the following mapping:
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
IN11_IN_A(x1)  =  IN11_IN_A
U1_A(x1, x2, x3, x4)  =  U1_A(x4)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_A(lessc23_out_a) → IN11_IN_A
IN11_IN_AU1_A(lessc23_in_a)

The TRS R consists of the following rules:

lessc23_in_alessc23_out_a

The set Q consists of the following terms:

lessc23_in_a

We have to consider all (P,Q,R)-chains.

(28) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule IN11_IN_AU1_A(lessc23_in_a) at position [0] we obtained the following new rules [LPAR04]:

IN11_IN_AU1_A(lessc23_out_a)

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_A(lessc23_out_a) → IN11_IN_A
IN11_IN_AU1_A(lessc23_out_a)

The TRS R consists of the following rules:

lessc23_in_alessc23_out_a

The set Q consists of the following terms:

lessc23_in_a

We have to consider all (P,Q,R)-chains.

(30) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_A(lessc23_out_a) → IN11_IN_A
IN11_IN_AU1_A(lessc23_out_a)

R is empty.
The set Q consists of the following terms:

lessc23_in_a

We have to consider all (P,Q,R)-chains.

(32) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

lessc23_in_a

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_A(lessc23_out_a) → IN11_IN_A
IN11_IN_AU1_A(lessc23_out_a)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(34) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = IN11_IN_A evaluates to t =IN11_IN_A

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

IN11_IN_AU1_A(lessc23_out_a)
with rule IN11_IN_AU1_A(lessc23_out_a) at position [] and matcher [ ]

U1_A(lessc23_out_a)IN11_IN_A
with rule U1_A(lessc23_out_a) → IN11_IN_A

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(35) NO

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → P41_IN_GAA(T97, T99, T100)
P41_IN_GAA(T97, T99, T103) → U6_GAA(T97, T99, T103, lessc43_in_ga(T97, T99))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → IN1_IN_GA(s(T97), T103)
IN1_IN_GA(T134, tree(T138, T136, T142)) → U16_GA(T134, T138, T136, T142, lessc56_in_ag(T138, T134))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134, T142)
IN1_IN_GA(T169, tree(T173, T171, T174)) → P66_IN_AGA(T173, T169, T174)
P66_IN_AGA(0, s(T179), T180) → IN1_IN_GA(s(T179), T180)
IN1_IN_GA(s(T270), tree(0, T262, T271)) → IN1_IN_GA(s(T270), T271)
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → P73_IN_AGA(T284, T283, T285)
P73_IN_AGA(T193, T192, T197) → U11_AGA(T193, T192, T197, lessc56_in_ag(T193, T192))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192), T197)
P66_IN_AGA(s(T193), s(T192), T194) → P73_IN_AGA(T193, T192, T194)

The TRS R consists of the following rules:

lessc23_in_a(s(T65)) → lessc23_out_a(s(T65))
lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
0  =  0
lessc23_in_a(x1)  =  lessc23_in_a
lessc23_out_a(x1)  =  lessc23_out_a
s(x1)  =  s(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
IN1_IN_GA(x1, x2)  =  IN1_IN_GA(x1)
P41_IN_GAA(x1, x2, x3)  =  P41_IN_GAA(x1)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U16_GA(x1, x2, x3, x4, x5)  =  U16_GA(x1, x5)
P66_IN_AGA(x1, x2, x3)  =  P66_IN_AGA(x2)
P73_IN_AGA(x1, x2, x3)  =  P73_IN_AGA(x2)
U11_AGA(x1, x2, x3, x4)  =  U11_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(37) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97), tree(s(T99), T100, T16)) → P41_IN_GAA(T97, T99, T100)
P41_IN_GAA(T97, T99, T103) → U6_GAA(T97, T99, T103, lessc43_in_ga(T97, T99))
U6_GAA(T97, T99, T103, lessc43_out_ga(T97, T99)) → IN1_IN_GA(s(T97), T103)
IN1_IN_GA(T134, tree(T138, T136, T142)) → U16_GA(T134, T138, T136, T142, lessc56_in_ag(T138, T134))
U16_GA(T134, T138, T136, T142, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134, T142)
IN1_IN_GA(T169, tree(T173, T171, T174)) → P66_IN_AGA(T173, T169, T174)
P66_IN_AGA(0, s(T179), T180) → IN1_IN_GA(s(T179), T180)
IN1_IN_GA(s(T270), tree(0, T262, T271)) → IN1_IN_GA(s(T270), T271)
IN1_IN_GA(s(T283), tree(s(T284), T262, T285)) → P73_IN_AGA(T284, T283, T285)
P73_IN_AGA(T193, T192, T197) → U11_AGA(T193, T192, T197, lessc56_in_ag(T193, T192))
U11_AGA(T193, T192, T197, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192), T197)
P66_IN_AGA(s(T193), s(T192), T194) → P73_IN_AGA(T193, T192, T194)

The TRS R consists of the following rules:

lessc43_in_ga(0, s(T110)) → lessc43_out_ga(0, s(T110))
lessc43_in_ga(s(T115), s(T117)) → U37_ga(T115, T117, lessc43_in_ga(T115, T117))
lessc56_in_ag(0, s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T156), s(T155)) → U38_ag(T156, T155, lessc56_in_ag(T156, T155))
U37_ga(T115, T117, lessc43_out_ga(T115, T117)) → lessc43_out_ga(s(T115), s(T117))
U38_ag(T156, T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
lessc43_in_ga(x1, x2)  =  lessc43_in_ga(x1)
lessc43_out_ga(x1, x2)  =  lessc43_out_ga(x1)
U37_ga(x1, x2, x3)  =  U37_ga(x1, x3)
lessc56_in_ag(x1, x2)  =  lessc56_in_ag(x2)
lessc56_out_ag(x1, x2)  =  lessc56_out_ag(x1, x2)
U38_ag(x1, x2, x3)  =  U38_ag(x2, x3)
IN1_IN_GA(x1, x2)  =  IN1_IN_GA(x1)
P41_IN_GAA(x1, x2, x3)  =  P41_IN_GAA(x1)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
U16_GA(x1, x2, x3, x4, x5)  =  U16_GA(x1, x5)
P66_IN_AGA(x1, x2, x3)  =  P66_IN_AGA(x2)
P73_IN_AGA(x1, x2, x3)  =  P73_IN_AGA(x2)
U11_AGA(x1, x2, x3, x4)  =  U11_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(39) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
P41_IN_GAA(T97) → U6_GAA(T97, lessc43_in_ga(T97))
U6_GAA(T97, lessc43_out_ga(T97)) → IN1_IN_GA(s(T97))
IN1_IN_GA(T134) → U16_GA(T134, lessc56_in_ag(T134))
U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
P73_IN_AGA(T192) → U11_AGA(T192, lessc56_in_ag(T192))
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(41) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P41_IN_GAA(T97) → U6_GAA(T97, lessc43_in_ga(T97)) at position [1] we obtained the following new rules [LPAR04]:

P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
U6_GAA(T97, lessc43_out_ga(T97)) → IN1_IN_GA(s(T97))
IN1_IN_GA(T134) → U16_GA(T134, lessc56_in_ag(T134))
U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
P73_IN_AGA(T192) → U11_AGA(T192, lessc56_in_ag(T192))
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(43) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule IN1_IN_GA(T134) → U16_GA(T134, lessc56_in_ag(T134)) at position [1] we obtained the following new rules [LPAR04]:

IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
U6_GAA(T97, lessc43_out_ga(T97)) → IN1_IN_GA(s(T97))
U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
P73_IN_AGA(T192) → U11_AGA(T192, lessc56_in_ag(T192))
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(45) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P73_IN_AGA(T192) → U11_AGA(T192, lessc56_in_ag(T192)) at position [1] we obtained the following new rules [LPAR04]:

P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
U6_GAA(T97, lessc43_out_ga(T97)) → IN1_IN_GA(s(T97))
U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(47) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U6_GAA(T97, lessc43_out_ga(T97)) → IN1_IN_GA(s(T97)) we obtained the following new rules [LPAR04]:

U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(49) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U16_GA(T134, lessc56_out_ag(T138, T134)) → IN1_IN_GA(T134) we obtained the following new rules [LPAR04]:

U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
IN1_IN_GA(T169) → P66_IN_AGA(T169)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(51) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule IN1_IN_GA(T169) → P66_IN_AGA(T169) we obtained the following new rules [LPAR04]:

IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))
IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(53) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U11_AGA(T192, lessc56_out_ag(T193, T192)) → IN1_IN_GA(s(T192)) we obtained the following new rules [LPAR04]:

U11_AGA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(s(z0)))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN1_IN_GA(s(T97)) → P41_IN_GAA(T97)
P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))
IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(s(z0)))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(55) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IN1_IN_GA(s(T97)) → P41_IN_GAA(T97) we obtained the following new rules [LPAR04]:

IN1_IN_GA(s(0)) → P41_IN_GAA(0)
IN1_IN_GA(s(s(y_0))) → P41_IN_GAA(s(y_0))

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
IN1_IN_GA(s(T283)) → P73_IN_AGA(T283)
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))
IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(s(z0)))
IN1_IN_GA(s(0)) → P41_IN_GAA(0)
IN1_IN_GA(s(s(y_0))) → P41_IN_GAA(s(y_0))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(57) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule IN1_IN_GA(s(T283)) → P73_IN_AGA(T283) we obtained the following new rules [LPAR04]:

IN1_IN_GA(s(s(y_0))) → P73_IN_AGA(s(y_0))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
P66_IN_AGA(s(T192)) → P73_IN_AGA(T192)
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))
IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(s(z0)))
IN1_IN_GA(s(0)) → P41_IN_GAA(0)
IN1_IN_GA(s(s(y_0))) → P41_IN_GAA(s(y_0))
IN1_IN_GA(s(s(y_0))) → P73_IN_AGA(s(y_0))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(59) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule P66_IN_AGA(s(T192)) → P73_IN_AGA(T192) we obtained the following new rules [LPAR04]:

P66_IN_AGA(s(s(y_0))) → P73_IN_AGA(s(y_0))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P66_IN_AGA(s(T179)) → IN1_IN_GA(s(T179))
IN1_IN_GA(s(T270)) → IN1_IN_GA(s(T270))
P41_IN_GAA(0) → U6_GAA(0, lessc43_out_ga(0))
P41_IN_GAA(s(x0)) → U6_GAA(s(x0), U37_ga(x0, lessc43_in_ga(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), lessc56_out_ag(0, s(x0)))
IN1_IN_GA(s(x0)) → U16_GA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), lessc56_out_ag(0, s(x0)))
P73_IN_AGA(s(x0)) → U11_AGA(s(x0), U38_ag(x0, lessc56_in_ag(x0)))
U6_GAA(0, lessc43_out_ga(0)) → IN1_IN_GA(s(0))
U6_GAA(s(z0), lessc43_out_ga(s(z0))) → IN1_IN_GA(s(s(z0)))
U16_GA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(z0))
U16_GA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(z0))
IN1_IN_GA(s(z0)) → P66_IN_AGA(s(z0))
IN1_IN_GA(s(0)) → P66_IN_AGA(s(0))
IN1_IN_GA(s(s(z0))) → P66_IN_AGA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(0, s(z0))) → IN1_IN_GA(s(s(z0)))
U11_AGA(s(z0), lessc56_out_ag(x1, s(z0))) → IN1_IN_GA(s(s(z0)))
IN1_IN_GA(s(0)) → P41_IN_GAA(0)
IN1_IN_GA(s(s(y_0))) → P41_IN_GAA(s(y_0))
IN1_IN_GA(s(s(y_0))) → P73_IN_AGA(s(y_0))
P66_IN_AGA(s(s(y_0))) → P73_IN_AGA(s(y_0))

The TRS R consists of the following rules:

lessc43_in_ga(0) → lessc43_out_ga(0)
lessc43_in_ga(s(T115)) → U37_ga(T115, lessc43_in_ga(T115))
lessc56_in_ag(s(T149)) → lessc56_out_ag(0, s(T149))
lessc56_in_ag(s(T155)) → U38_ag(T155, lessc56_in_ag(T155))
U37_ga(T115, lessc43_out_ga(T115)) → lessc43_out_ga(s(T115))
U38_ag(T155, lessc56_out_ag(T156, T155)) → lessc56_out_ag(s(T156), s(T155))

The set Q consists of the following terms:

lessc43_in_ga(x0)
lessc56_in_ag(x0)
U37_ga(x0, x1)
U38_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(61) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = IN1_IN_GA(s(T270)) evaluates to t =IN1_IN_GA(s(T270))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from IN1_IN_GA(s(T270)) to IN1_IN_GA(s(T270)).



(62) NO