(0) Obligation:

Clauses:

fl([], [], 0).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append([], X, X).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Queries:

fl(a,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fl_in: (f,b,f)
append_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))
FL_IN_AGA(.(E, X), R, s(Z)) → APPEND_IN_AAG(E, Y, R)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → U2_AGA(E, X, R, Z, fl_in_aga(X, Y, Z))
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x4, x5)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))
FL_IN_AGA(.(E, X), R, s(Z)) → APPEND_IN_AAG(E, Y, R)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → U2_AGA(E, X, R, Z, fl_in_aga(X, Y, Z))
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x4, x5)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x1, x3, x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
    The graph contains the following edges 1 > 1

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)
FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x2, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x3, x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x3, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)
FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))

The TRS R consists of the following rules:

append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The argument filtering Pi contains the following mapping:
[]  =  []
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x4, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(R, append_out_aag(E, Y, R)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(R, append_in_aag(R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X, X)
append_in_aag(.(X, Zs)) → U3_aag(X, Zs, append_in_aag(Zs))
U3_aag(X, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(19) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule FL_IN_AGA(R) → U1_AGA(R, append_in_aag(R)) at position [1] we obtained the following new rules [LPAR04]:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
FL_IN_AGA(.(x0, x1)) → U1_AGA(.(x0, x1), U3_aag(x0, x1, append_in_aag(x1)))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(R, append_out_aag(E, Y, R)) → FL_IN_AGA(Y)
FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
FL_IN_AGA(.(x0, x1)) → U1_AGA(.(x0, x1), U3_aag(x0, x1, append_in_aag(x1)))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X, X)
append_in_aag(.(X, Zs)) → U3_aag(X, Zs, append_in_aag(Zs))
U3_aag(X, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(21) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U1_AGA(R, append_out_aag(E, Y, R)) → FL_IN_AGA(Y) we obtained the following new rules [LPAR04]:

U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
FL_IN_AGA(.(x0, x1)) → U1_AGA(.(x0, x1), U3_aag(x0, x1, append_in_aag(x1)))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2)

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X, X)
append_in_aag(.(X, Zs)) → U3_aag(X, Zs, append_in_aag(Zs))
U3_aag(X, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(23) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


FL_IN_AGA(.(x0, x1)) → U1_AGA(.(x0, x1), U3_aag(x0, x1, append_in_aag(x1)))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x1 + x2   
POL(FL_IN_AGA(x1)) = x1   
POL(U1_AGA(x1, x2)) = x2   
POL(U3_aag(x1, x2, x3)) = x1 + x3   
POL([]) = 0   
POL(append_in_aag(x1)) = x1   
POL(append_out_aag(x1, x2, x3)) = x2   

The following usable rules [FROCOS05] were oriented:

append_in_aag(X) → append_out_aag([], X, X)
append_in_aag(.(X, Zs)) → U3_aag(X, Zs, append_in_aag(Zs))
U3_aag(X, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2)

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X, X)
append_in_aag(.(X, Zs)) → U3_aag(X, Zs, append_in_aag(Zs))
U3_aag(X, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(25) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2)

R is empty.
The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(27) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

append_in_aag(x0)
U3_aag(x0, x1, x2)

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(29) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2) we obtained the following new rules [LPAR04]:

U1_AGA(.(x0, x1), append_out_aag([], .(x0, x1), .(x0, x1))) → FL_IN_AGA(.(x0, x1))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(x0, x1), append_out_aag([], .(x0, x1), .(x0, x1))) → FL_IN_AGA(.(x0, x1))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(31) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U1_AGA(.(z0, z1), append_out_aag(x1, x2, .(z0, z1))) → FL_IN_AGA(x2) we obtained the following new rules [LPAR04]:

U1_AGA(.(x0, x1), append_out_aag([], .(x0, x1), .(x0, x1))) → FL_IN_AGA(.(x0, x1))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))
U1_AGA(z0, append_out_aag([], z0, z0)) → FL_IN_AGA(z0)
U1_AGA(.(x0, x1), append_out_aag([], .(x0, x1), .(x0, x1))) → FL_IN_AGA(.(x0, x1))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U1_AGA(z0, append_out_aag([], z0, z0)) evaluates to t =U1_AGA(z0, append_out_aag([], z0, z0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U1_AGA(z0, append_out_aag([], z0, z0))FL_IN_AGA(z0)
with rule U1_AGA(z0', append_out_aag([], z0', z0')) → FL_IN_AGA(z0') at position [] and matcher [z0' / z0]

FL_IN_AGA(z0)U1_AGA(z0, append_out_aag([], z0, z0))
with rule FL_IN_AGA(x0) → U1_AGA(x0, append_out_aag([], x0, x0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(34) FALSE

(35) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fl_in: (f,b,f)
append_in: (f,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(36) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)

(37) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))
FL_IN_AGA(.(E, X), R, s(Z)) → APPEND_IN_AAG(E, Y, R)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → U2_AGA(E, X, R, Z, fl_in_aga(X, Y, Z))
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x5)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x1, x5)

We have to consider all (P,R,Pi)-chains

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))
FL_IN_AGA(.(E, X), R, s(Z)) → APPEND_IN_AAG(E, Y, R)
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → U3_AAG(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → U2_AGA(E, X, R, Z, fl_in_aga(X, Y, Z))
U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)
U3_AAG(x1, x2, x3, x4, x5)  =  U3_AAG(x1, x5)
U2_AGA(x1, x2, x3, x4, x5)  =  U2_AGA(x1, x5)

We have to consider all (P,R,Pi)-chains

(39) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(40) Complex Obligation (AND)

(41) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(42) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(43) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_AAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND_IN_AAG(x1, x2, x3)  =  APPEND_IN_AAG(x3)

We have to consider all (P,R,Pi)-chains

(44) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(46) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND_IN_AAG(.(X, Zs)) → APPEND_IN_AAG(Zs)
    The graph contains the following edges 1 > 1

(47) TRUE

(48) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)
FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))

The TRS R consists of the following rules:

fl_in_aga([], [], 0) → fl_out_aga([], [], 0)
fl_in_aga(.(E, X), R, s(Z)) → U1_aga(E, X, R, Z, append_in_aag(E, Y, R))
append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))
U1_aga(E, X, R, Z, append_out_aag(E, Y, R)) → U2_aga(E, X, R, Z, fl_in_aga(X, Y, Z))
U2_aga(E, X, R, Z, fl_out_aga(X, Y, Z)) → fl_out_aga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_aga(x1, x2, x3)  =  fl_in_aga(x2)
[]  =  []
fl_out_aga(x1, x2, x3)  =  fl_out_aga(x1, x3)
U1_aga(x1, x2, x3, x4, x5)  =  U1_aga(x5)
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
U2_aga(x1, x2, x3, x4, x5)  =  U2_aga(x1, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)

We have to consider all (P,R,Pi)-chains

(49) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(50) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_AGA(E, X, R, Z, append_out_aag(E, Y, R)) → FL_IN_AGA(X, Y, Z)
FL_IN_AGA(.(E, X), R, s(Z)) → U1_AGA(E, X, R, Z, append_in_aag(E, Y, R))

The TRS R consists of the following rules:

append_in_aag([], X, X) → append_out_aag([], X, X)
append_in_aag(.(X, Xs), Ys, .(X, Zs)) → U3_aag(X, Xs, Ys, Zs, append_in_aag(Xs, Ys, Zs))
U3_aag(X, Xs, Ys, Zs, append_out_aag(Xs, Ys, Zs)) → append_out_aag(.(X, Xs), Ys, .(X, Zs))

The argument filtering Pi contains the following mapping:
[]  =  []
append_in_aag(x1, x2, x3)  =  append_in_aag(x3)
append_out_aag(x1, x2, x3)  =  append_out_aag(x1, x2)
.(x1, x2)  =  .(x1, x2)
U3_aag(x1, x2, x3, x4, x5)  =  U3_aag(x1, x5)
s(x1)  =  s(x1)
FL_IN_AGA(x1, x2, x3)  =  FL_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x5)

We have to consider all (P,R,Pi)-chains

(51) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_in_aag(R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X)
append_in_aag(.(X, Zs)) → U3_aag(X, append_in_aag(Zs))
U3_aag(X, append_out_aag(Xs, Ys)) → append_out_aag(.(X, Xs), Ys)

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1)

We have to consider all (P,Q,R)-chains.

(53) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

append_in_aag(.(X, Zs)) → U3_aag(X, append_in_aag(Zs))

Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + 2·x1 + x2   
POL(FL_IN_AGA(x1)) = 2·x1   
POL(U1_AGA(x1)) = x1   
POL(U3_aag(x1, x2)) = 1 + 2·x1 + x2   
POL([]) = 0   
POL(append_in_aag(x1)) = 2·x1   
POL(append_out_aag(x1, x2)) = x1 + 2·x2   

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_in_aag(R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X)
U3_aag(X, append_out_aag(Xs, Ys)) → append_out_aag(.(X, Xs), Ys)

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1)

We have to consider all (P,Q,R)-chains.

(55) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_in_aag(R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X)

The set Q consists of the following terms:

append_in_aag(x0)
U3_aag(x0, x1)

We have to consider all (P,Q,R)-chains.

(57) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

U3_aag(x0, x1)

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_in_aag(R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X)

The set Q consists of the following terms:

append_in_aag(x0)

We have to consider all (P,Q,R)-chains.

(59) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule FL_IN_AGA(R) → U1_AGA(append_in_aag(R)) at position [0] we obtained the following new rules [LPAR04]:

FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))

The TRS R consists of the following rules:

append_in_aag(X) → append_out_aag([], X)

The set Q consists of the following terms:

append_in_aag(x0)

We have to consider all (P,Q,R)-chains.

(61) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))

R is empty.
The set Q consists of the following terms:

append_in_aag(x0)

We have to consider all (P,Q,R)-chains.

(63) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

append_in_aag(x0)

(64) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y)
FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(65) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U1_AGA(append_out_aag(E, Y)) → FL_IN_AGA(Y) we obtained the following new rules [LPAR04]:

U1_AGA(append_out_aag([], z0)) → FL_IN_AGA(z0)

(66) Obligation:

Q DP problem:
The TRS P consists of the following rules:

FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))
U1_AGA(append_out_aag([], z0)) → FL_IN_AGA(z0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(67) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U1_AGA(append_out_aag([], z0)) evaluates to t =U1_AGA(append_out_aag([], z0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U1_AGA(append_out_aag([], z0))FL_IN_AGA(z0)
with rule U1_AGA(append_out_aag([], z0')) → FL_IN_AGA(z0') at position [] and matcher [z0' / z0]

FL_IN_AGA(z0)U1_AGA(append_out_aag([], z0))
with rule FL_IN_AGA(R) → U1_AGA(append_out_aag([], R))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(68) FALSE