(0) Obligation:

Clauses:

fl([], [], 0).
fl(.(E, X), R, s(Z)) :- ','(append(E, Y, R), fl(X, Y, Z)).
append([], X, X).
append(.(X, Xs), Ys, .(X, Zs)) :- append(Xs, Ys, Zs).

Queries:

fl(g,g,a).

(1) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fl_in: (b,b,f)
append_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(2) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)

(3) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))
FL_IN_GGA(.(E, X), R, s(Z)) → APPEND_IN_GAG(E, Y, R)
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U3_GAG(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → U2_GGA(E, X, R, Z, fl_in_gga(X, Y, Z))
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x2, x5)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)
U3_GAG(x1, x2, x3, x4, x5)  =  U3_GAG(x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x5)

We have to consider all (P,R,Pi)-chains

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))
FL_IN_GGA(.(E, X), R, s(Z)) → APPEND_IN_GAG(E, Y, R)
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U3_GAG(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → U2_GGA(E, X, R, Z, fl_in_gga(X, Y, Z))
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x2, x5)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)
U3_GAG(x1, x2, x3, x4, x5)  =  U3_GAG(x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x5)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), .(X, Zs)) → APPEND_IN_GAG(Xs, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND_IN_GAG(.(X, Xs), .(X, Zs)) → APPEND_IN_GAG(Xs, Zs)
    The graph contains the following edges 1 > 1, 2 > 2

(13) TRUE

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)
FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x2, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x2, x5)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)
FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))

The TRS R consists of the following rules:

append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))

The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x2)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x2, x5)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(X, append_out_gag(Y)) → FL_IN_GGA(X, Y)
FL_IN_GGA(.(E, X), R) → U1_GGA(X, append_in_gag(E, R))

The TRS R consists of the following rules:

append_in_gag([], X) → append_out_gag(X)
append_in_gag(.(X, Xs), .(X, Zs)) → U3_gag(append_in_gag(Xs, Zs))
U3_gag(append_out_gag(Ys)) → append_out_gag(Ys)

The set Q consists of the following terms:

append_in_gag(x0, x1)
U3_gag(x0)

We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • FL_IN_GGA(.(E, X), R) → U1_GGA(X, append_in_gag(E, R))
    The graph contains the following edges 1 > 1

  • U1_GGA(X, append_out_gag(Y)) → FL_IN_GGA(X, Y)
    The graph contains the following edges 1 >= 1, 2 > 2

(20) TRUE

(21) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fl_in: (b,b,f)
append_in: (b,f,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(22) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)

(23) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))
FL_IN_GGA(.(E, X), R, s(Z)) → APPEND_IN_GAG(E, Y, R)
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U3_GAG(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → U2_GGA(E, X, R, Z, fl_in_gga(X, Y, Z))
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x2, x3, x5)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)
U3_GAG(x1, x2, x3, x4, x5)  =  U3_GAG(x1, x2, x4, x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(24) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))
FL_IN_GGA(.(E, X), R, s(Z)) → APPEND_IN_GAG(E, Y, R)
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → U3_GAG(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → U2_GGA(E, X, R, Z, fl_in_gga(X, Y, Z))
U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x2, x3, x5)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)
U3_GAG(x1, x2, x3, x4, x5)  =  U3_GAG(x1, x2, x4, x5)
U2_GGA(x1, x2, x3, x4, x5)  =  U2_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(25) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 3 less nodes.

(26) Complex Obligation (AND)

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(28) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), Ys, .(X, Zs)) → APPEND_IN_GAG(Xs, Ys, Zs)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APPEND_IN_GAG(x1, x2, x3)  =  APPEND_IN_GAG(x1, x3)

We have to consider all (P,R,Pi)-chains

(30) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APPEND_IN_GAG(.(X, Xs), .(X, Zs)) → APPEND_IN_GAG(Xs, Zs)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(32) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APPEND_IN_GAG(.(X, Xs), .(X, Zs)) → APPEND_IN_GAG(Xs, Zs)
    The graph contains the following edges 1 > 1, 2 > 2

(33) TRUE

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)
FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))

The TRS R consists of the following rules:

fl_in_gga([], [], 0) → fl_out_gga([], [], 0)
fl_in_gga(.(E, X), R, s(Z)) → U1_gga(E, X, R, Z, append_in_gag(E, Y, R))
append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))
U1_gga(E, X, R, Z, append_out_gag(E, Y, R)) → U2_gga(E, X, R, Z, fl_in_gga(X, Y, Z))
U2_gga(E, X, R, Z, fl_out_gga(X, Y, Z)) → fl_out_gga(.(E, X), R, s(Z))

The argument filtering Pi contains the following mapping:
fl_in_gga(x1, x2, x3)  =  fl_in_gga(x1, x2)
[]  =  []
fl_out_gga(x1, x2, x3)  =  fl_out_gga(x1, x2, x3)
.(x1, x2)  =  .(x1, x2)
U1_gga(x1, x2, x3, x4, x5)  =  U1_gga(x1, x2, x3, x5)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
U2_gga(x1, x2, x3, x4, x5)  =  U2_gga(x1, x2, x3, x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(35) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_GGA(E, X, R, Z, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y, Z)
FL_IN_GGA(.(E, X), R, s(Z)) → U1_GGA(E, X, R, Z, append_in_gag(E, Y, R))

The TRS R consists of the following rules:

append_in_gag([], X, X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), Ys, .(X, Zs)) → U3_gag(X, Xs, Ys, Zs, append_in_gag(Xs, Ys, Zs))
U3_gag(X, Xs, Ys, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))

The argument filtering Pi contains the following mapping:
[]  =  []
.(x1, x2)  =  .(x1, x2)
append_in_gag(x1, x2, x3)  =  append_in_gag(x1, x3)
append_out_gag(x1, x2, x3)  =  append_out_gag(x1, x2, x3)
U3_gag(x1, x2, x3, x4, x5)  =  U3_gag(x1, x2, x4, x5)
s(x1)  =  s(x1)
FL_IN_GGA(x1, x2, x3)  =  FL_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4, x5)  =  U1_GGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(37) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_GGA(E, X, R, append_out_gag(E, Y, R)) → FL_IN_GGA(X, Y)
FL_IN_GGA(.(E, X), R) → U1_GGA(E, X, R, append_in_gag(E, R))

The TRS R consists of the following rules:

append_in_gag([], X) → append_out_gag([], X, X)
append_in_gag(.(X, Xs), .(X, Zs)) → U3_gag(X, Xs, Zs, append_in_gag(Xs, Zs))
U3_gag(X, Xs, Zs, append_out_gag(Xs, Ys, Zs)) → append_out_gag(.(X, Xs), Ys, .(X, Zs))

The set Q consists of the following terms:

append_in_gag(x0, x1)
U3_gag(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.