(0) Obligation:
Clauses:
flat([], []).
flat(.([], T), R) :- flat(T, R).
flat(.(.(H, T), TT), .(H, R)) :- flat(.(T, TT), R).
Queries:
flat(a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1,
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x4,
x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1,
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x4,
x5)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1,
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x4,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1,
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x4,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x2,
x3)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x1,
x4,
x5)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1,
x2)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x2,
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x4,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
R is empty.
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + 2·x2
POL(FLAT_IN_AG(x1)) = 2·x1
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FLAT_IN_AG(
R) evaluates to t =
FLAT_IN_AG(
R)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(R) to FLAT_IN_AG(R).
(14) FALSE
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flat_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x5)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x5)
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.([], T), R) → U1_AG(T, R, flat_in_ag(T, R))
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → U2_AG(H, T, TT, R, flat_in_ag(.(T, TT), R))
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
U1_AG(
x1,
x2,
x3) =
U1_AG(
x3)
U2_AG(
x1,
x2,
x3,
x4,
x5) =
U2_AG(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
The TRS R consists of the following rules:
flat_in_ag([], []) → flat_out_ag([], [])
flat_in_ag(.([], T), R) → U1_ag(T, R, flat_in_ag(T, R))
flat_in_ag(.(.(H, T), TT), .(H, R)) → U2_ag(H, T, TT, R, flat_in_ag(.(T, TT), R))
U2_ag(H, T, TT, R, flat_out_ag(.(T, TT), R)) → flat_out_ag(.(.(H, T), TT), .(H, R))
U1_ag(T, R, flat_out_ag(T, R)) → flat_out_ag(.([], T), R)
The argument filtering Pi contains the following mapping:
flat_in_ag(
x1,
x2) =
flat_in_ag(
x2)
[] =
[]
flat_out_ag(
x1,
x2) =
flat_out_ag(
x1)
U1_ag(
x1,
x2,
x3) =
U1_ag(
x3)
.(
x1,
x2) =
.(
x1,
x2)
U2_ag(
x1,
x2,
x3,
x4,
x5) =
U2_ag(
x1,
x5)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(.(H, T), TT), .(H, R)) → FLAT_IN_AG(.(T, TT), R)
FLAT_IN_AG(.([], T), R) → FLAT_IN_AG(T, R)
R is empty.
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
FLAT_IN_AG(
x1,
x2) =
FLAT_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
The following dependency pairs can be deleted:
FLAT_IN_AG(.(H, R)) → FLAT_IN_AG(R)
No rules are removed from R.
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + 2·x2
POL(FLAT_IN_AG(x1)) = 2·x1
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLAT_IN_AG(R) → FLAT_IN_AG(R)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(27) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
FLAT_IN_AG(
R) evaluates to t =
FLAT_IN_AG(
R)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from FLAT_IN_AG(R) to FLAT_IN_AG(R).
(28) FALSE