(0) Obligation:
Clauses:
delete(X, tree(X, void, Right), Right).
delete(X, tree(X, Left, void), Left).
delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1).
delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)).
delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)).
delmin(tree(Y, void, Right), Y, Right).
delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1).
less(0, s(X3)).
less(s(X), s(Y)) :- less(X, Y).
Queries:
delmin(a,a,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
delmin_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x7)
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
U6_AAG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_AAG(
x7)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
U6_AAG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_AAG(
x7)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(7) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
R is empty.
The argument filtering Pi contains the following mapping:
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left1, X2)) → DELMIN_IN_AAG(Left1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(11) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DELMIN_IN_AAG(tree(X, Left1, X2)) → DELMIN_IN_AAG(Left1)
The graph contains the following edges 1 > 1
(12) TRUE
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
delmin_in: (f,f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag(
x3)
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x1,
x5,
x6,
x7)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag(
x3)
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x1,
x5,
x6,
x7)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag(
x3)
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x1,
x5,
x6,
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
U6_AAG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_AAG(
x1,
x5,
x6,
x7)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_AAG(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag(
x3)
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x1,
x5,
x6,
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
U6_AAG(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_AAG(
x1,
x5,
x6,
x7)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
The TRS R consists of the following rules:
delmin_in_aag(tree(Y, void, Right), Y, Right) → delmin_out_aag(tree(Y, void, Right), Y, Right)
delmin_in_aag(tree(X, Left, X1), Y, tree(X, Left1, X2)) → U6_aag(X, Left, X1, Y, Left1, X2, delmin_in_aag(Left, Y, Left1))
U6_aag(X, Left, X1, Y, Left1, X2, delmin_out_aag(Left, Y, Left1)) → delmin_out_aag(tree(X, Left, X1), Y, tree(X, Left1, X2))
The argument filtering Pi contains the following mapping:
delmin_in_aag(
x1,
x2,
x3) =
delmin_in_aag(
x3)
delmin_out_aag(
x1,
x2,
x3) =
delmin_out_aag(
x3)
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
U6_aag(
x1,
x2,
x3,
x4,
x5,
x6,
x7) =
U6_aag(
x1,
x5,
x6,
x7)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left, X1), Y, tree(X, Left1, X2)) → DELMIN_IN_AAG(Left, Y, Left1)
R is empty.
The argument filtering Pi contains the following mapping:
tree(
x1,
x2,
x3) =
tree(
x1,
x2,
x3)
DELMIN_IN_AAG(
x1,
x2,
x3) =
DELMIN_IN_AAG(
x3)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DELMIN_IN_AAG(tree(X, Left1, X2)) → DELMIN_IN_AAG(Left1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.