(0) Obligation:

Clauses:

delete(X, tree(X, void, Right), Right).
delete(X, tree(X, Left, void), Left).
delete(X, tree(X, Left, Right), tree(Y, Left, Right1)) :- delmin(Right, Y, Right1).
delete(X, tree(Y, Left, Right), tree(Y, Left1, Right)) :- ','(less(X, Y), delete(X, Left, Left1)).
delete(X, tree(Y, Left, Right), tree(Y, Left, Right1)) :- ','(less(Y, X), delete(X, Right, Right1)).
delmin(tree(Y, void, Right), Y, Right).
delmin(tree(X, Left, X1), Y, tree(X, Left1, X2)) :- delmin(Left, Y, Left1).
less(0, s(X3)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

delete(g,a,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

delmin19(tree(T94, T100, T96), T101, tree(T94, T102, T99)) :- delmin19(T100, T101, T102).
less34(s(T150), s(T152)) :- less34(T150, T152).
less46(s(T194), s(T193)) :- less46(T194, T193).
p44(T174, T169, T175, T176) :- less46(T174, T169).
p44(T174, T169, T179, T180) :- ','(lessc46(T174, T169), delete1(T169, T179, T180)).
p32(T127, T132, T133, T134) :- less34(T127, T132).
p32(T127, T132, T137, T138) :- ','(lessc34(T127, T132), delete1(T127, T137, T138)).
p72(0, s(T283), T284, T285) :- delete1(s(T283), T284, T285).
p72(s(T296), s(T295), T297, T298) :- p79(T296, T295, T297, T298).
p65(T231, T233, T234, T235) :- less34(T231, T233).
p65(T231, T233, T238, T239) :- ','(lessc34(T231, T233), delete1(s(T231), T238, T239)).
p79(T296, T295, T297, T298) :- less46(T296, T295).
p79(T296, T295, T301, T302) :- ','(lessc46(T296, T295), delete1(s(T295), T301, T302)).
p116(0, s(T493), T494, T495) :- delete1(s(T493), T494, T495).
p116(s(T506), s(T505), T507, T508) :- p79(T506, T505, T507, T508).
delete1(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) :- delmin19(T65, T66, T67).
delete1(T127, tree(T132, T133, T130), tree(T132, T134, T130)) :- p32(T127, T132, T133, T134).
delete1(T169, tree(T174, T171, T175), tree(T174, T171, T176)) :- p44(T174, T169, T175, T176).
delete1(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) :- delete1(0, T219, T220).
delete1(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) :- p65(T231, T233, T234, T235).
delete1(T256, tree(T261, T258, T262), tree(T261, T258, T263)) :- p44(T261, T256, T262, T263).
delete1(T271, tree(T276, T273, T277), tree(T276, T273, T278)) :- p72(T276, T271, T277, T278).
delete1(T314, tree(T314, T315, tree(T356, T362, T358)), tree(T363, T315, tree(T356, T364, T361))) :- delmin19(T362, T363, T364).
delete1(T389, tree(T394, T395, T392), tree(T394, T396, T392)) :- p32(T389, T394, T395, T396).
delete1(T409, tree(T414, T411, T415), tree(T414, T411, T416)) :- p72(T414, T409, T415, T416).
delete1(0, tree(s(T436), T437, T427), tree(s(T436), T438, T427)) :- delete1(0, T437, T438).
delete1(s(T449), tree(s(T451), T452, T427), tree(s(T451), T453, T427)) :- p65(T449, T451, T452, T453).
delete1(T466, tree(T471, T468, T472), tree(T471, T468, T473)) :- p72(T471, T466, T472, T473).
delete1(T481, tree(T486, T483, T487), tree(T486, T483, T488)) :- p116(T486, T481, T487, T488).
delete1(T520, tree(T520, T521, tree(T562, T568, T564)), tree(T569, T521, tree(T562, T570, T567))) :- delmin19(T568, T569, T570).
delete1(T595, tree(T600, T601, T598), tree(T600, T602, T598)) :- p32(T595, T600, T601, T602).
delete1(T615, tree(T620, T617, T621), tree(T620, T617, T622)) :- p116(T620, T615, T621, T622).
delete1(0, tree(s(T642), T643, T633), tree(s(T642), T644, T633)) :- delete1(0, T643, T644).
delete1(s(T655), tree(s(T657), T658, T633), tree(s(T657), T659, T633)) :- p65(T655, T657, T658, T659).
delete1(T672, tree(T677, T674, T678), tree(T677, T674, T679)) :- p116(T677, T672, T678, T679).
delete1(s(T699), tree(0, T689, T700), tree(0, T689, T701)) :- delete1(s(T699), T700, T701).
delete1(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) :- p79(T712, T711, T713, T714).
delete1(T722, tree(T722, T723, tree(T764, T770, T766)), tree(T771, T723, tree(T764, T772, T769))) :- delmin19(T770, T771, T772).
delete1(T797, tree(T802, T803, T800), tree(T802, T804, T800)) :- p32(T797, T802, T803, T804).
delete1(T817, tree(T822, T819, T823), tree(T822, T819, T824)) :- p116(T822, T817, T823, T824).
delete1(0, tree(s(T844), T845, T835), tree(s(T844), T846, T835)) :- delete1(0, T845, T846).
delete1(s(T857), tree(s(T859), T860, T835), tree(s(T859), T861, T835)) :- p65(T857, T859, T860, T861).
delete1(T874, tree(T879, T876, T880), tree(T879, T876, T881)) :- p116(T879, T874, T880, T881).
delete1(s(T901), tree(0, T891, T902), tree(0, T891, T903)) :- delete1(s(T901), T902, T903).
delete1(s(T913), tree(s(T914), T891, T915), tree(s(T914), T891, T916)) :- p79(T914, T913, T915, T916).

Clauses:

delminc19(tree(T80, void, T81), T80, T81).
delminc19(tree(T94, T100, T96), T101, tree(T94, T102, T99)) :- delminc19(T100, T101, T102).
deletec1(T6, tree(T6, void, T7), T7).
deletec1(T10, tree(T10, T11, void), T11).
deletec1(T17, tree(T17, T18, tree(T33, void, T34)), tree(T33, T18, T34)).
deletec1(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) :- delminc19(T65, T66, T67).
deletec1(T127, tree(T132, T133, T130), tree(T132, T134, T130)) :- qc32(T127, T132, T133, T134).
deletec1(T169, tree(T174, T171, T175), tree(T174, T171, T176)) :- qc44(T174, T169, T175, T176).
deletec1(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) :- deletec1(0, T219, T220).
deletec1(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) :- qc65(T231, T233, T234, T235).
deletec1(T256, tree(T261, T258, T262), tree(T261, T258, T263)) :- qc44(T261, T256, T262, T263).
deletec1(T271, tree(T276, T273, T277), tree(T276, T273, T278)) :- qc72(T276, T271, T277, T278).
deletec1(T314, tree(T314, T315, tree(T330, void, T331)), tree(T330, T315, T331)).
deletec1(T314, tree(T314, T315, tree(T356, T362, T358)), tree(T363, T315, tree(T356, T364, T361))) :- delminc19(T362, T363, T364).
deletec1(T389, tree(T394, T395, T392), tree(T394, T396, T392)) :- qc32(T389, T394, T395, T396).
deletec1(T409, tree(T414, T411, T415), tree(T414, T411, T416)) :- qc72(T414, T409, T415, T416).
deletec1(0, tree(s(T436), T437, T427), tree(s(T436), T438, T427)) :- deletec1(0, T437, T438).
deletec1(s(T449), tree(s(T451), T452, T427), tree(s(T451), T453, T427)) :- qc65(T449, T451, T452, T453).
deletec1(T466, tree(T471, T468, T472), tree(T471, T468, T473)) :- qc72(T471, T466, T472, T473).
deletec1(T481, tree(T486, T483, T487), tree(T486, T483, T488)) :- qc116(T486, T481, T487, T488).
deletec1(T513, tree(T513, T514, void), T514).
deletec1(T520, tree(T520, T521, tree(T536, void, T537)), tree(T536, T521, T537)).
deletec1(T520, tree(T520, T521, tree(T562, T568, T564)), tree(T569, T521, tree(T562, T570, T567))) :- delminc19(T568, T569, T570).
deletec1(T595, tree(T600, T601, T598), tree(T600, T602, T598)) :- qc32(T595, T600, T601, T602).
deletec1(T615, tree(T620, T617, T621), tree(T620, T617, T622)) :- qc116(T620, T615, T621, T622).
deletec1(0, tree(s(T642), T643, T633), tree(s(T642), T644, T633)) :- deletec1(0, T643, T644).
deletec1(s(T655), tree(s(T657), T658, T633), tree(s(T657), T659, T633)) :- qc65(T655, T657, T658, T659).
deletec1(T672, tree(T677, T674, T678), tree(T677, T674, T679)) :- qc116(T677, T672, T678, T679).
deletec1(s(T699), tree(0, T689, T700), tree(0, T689, T701)) :- deletec1(s(T699), T700, T701).
deletec1(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) :- qc79(T712, T711, T713, T714).
deletec1(T722, tree(T722, T723, tree(T738, void, T739)), tree(T738, T723, T739)).
deletec1(T722, tree(T722, T723, tree(T764, T770, T766)), tree(T771, T723, tree(T764, T772, T769))) :- delminc19(T770, T771, T772).
deletec1(T797, tree(T802, T803, T800), tree(T802, T804, T800)) :- qc32(T797, T802, T803, T804).
deletec1(T817, tree(T822, T819, T823), tree(T822, T819, T824)) :- qc116(T822, T817, T823, T824).
deletec1(0, tree(s(T844), T845, T835), tree(s(T844), T846, T835)) :- deletec1(0, T845, T846).
deletec1(s(T857), tree(s(T859), T860, T835), tree(s(T859), T861, T835)) :- qc65(T857, T859, T860, T861).
deletec1(T874, tree(T879, T876, T880), tree(T879, T876, T881)) :- qc116(T879, T874, T880, T881).
deletec1(s(T901), tree(0, T891, T902), tree(0, T891, T903)) :- deletec1(s(T901), T902, T903).
deletec1(s(T913), tree(s(T914), T891, T915), tree(s(T914), T891, T916)) :- qc79(T914, T913, T915, T916).
lessc34(0, s(T145)).
lessc34(s(T150), s(T152)) :- lessc34(T150, T152).
lessc46(0, s(T187)).
lessc46(s(T194), s(T193)) :- lessc46(T194, T193).
qc44(T174, T169, T179, T180) :- ','(lessc46(T174, T169), deletec1(T169, T179, T180)).
qc32(T127, T132, T137, T138) :- ','(lessc34(T127, T132), deletec1(T127, T137, T138)).
qc72(0, s(T283), T284, T285) :- deletec1(s(T283), T284, T285).
qc72(s(T296), s(T295), T297, T298) :- qc79(T296, T295, T297, T298).
qc65(T231, T233, T238, T239) :- ','(lessc34(T231, T233), deletec1(s(T231), T238, T239)).
qc79(T296, T295, T301, T302) :- ','(lessc46(T296, T295), deletec1(s(T295), T301, T302)).
qc116(0, s(T493), T494, T495) :- deletec1(s(T493), T494, T495).
qc116(s(T506), s(T505), T507, T508) :- qc79(T506, T505, T507, T508).

Afs:

delete1(x1, x2, x3)  =  delete1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
delete1_in: (b,f,f)
delmin19_in: (f,f,f)
p32_in: (b,f,f,f)
less34_in: (b,f)
lessc34_in: (b,f)
p44_in: (f,b,f,f)
less46_in: (f,b)
lessc46_in: (f,b)
p65_in: (b,f,f,f)
p72_in: (f,b,f,f)
p79_in: (f,b,f,f)
p116_in: (f,b,f,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) → U20_GAA(T17, T18, T59, T65, T61, T66, T67, T64, delmin19_in_aaa(T65, T66, T67))
DELETE1_IN_GAA(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) → DELMIN19_IN_AAA(T65, T66, T67)
DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → U1_AAA(T94, T100, T96, T101, T102, T99, delmin19_in_aaa(T100, T101, T102))
DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → DELMIN19_IN_AAA(T100, T101, T102)
DELETE1_IN_GAA(T127, tree(T132, T133, T130), tree(T132, T134, T130)) → U21_GAA(T127, T132, T133, T130, T134, p32_in_gaaa(T127, T132, T133, T134))
DELETE1_IN_GAA(T127, tree(T132, T133, T130), tree(T132, T134, T130)) → P32_IN_GAAA(T127, T132, T133, T134)
P32_IN_GAAA(T127, T132, T133, T134) → U7_GAAA(T127, T132, T133, T134, less34_in_ga(T127, T132))
P32_IN_GAAA(T127, T132, T133, T134) → LESS34_IN_GA(T127, T132)
LESS34_IN_GA(s(T150), s(T152)) → U2_GA(T150, T152, less34_in_ga(T150, T152))
LESS34_IN_GA(s(T150), s(T152)) → LESS34_IN_GA(T150, T152)
P32_IN_GAAA(T127, T132, T137, T138) → U8_GAAA(T127, T132, T137, T138, lessc34_in_ga(T127, T132))
U8_GAAA(T127, T132, T137, T138, lessc34_out_ga(T127, T132)) → U9_GAAA(T127, T132, T137, T138, delete1_in_gaa(T127, T137, T138))
U8_GAAA(T127, T132, T137, T138, lessc34_out_ga(T127, T132)) → DELETE1_IN_GAA(T127, T137, T138)
DELETE1_IN_GAA(T169, tree(T174, T171, T175), tree(T174, T171, T176)) → U22_GAA(T169, T174, T171, T175, T176, p44_in_agaa(T174, T169, T175, T176))
DELETE1_IN_GAA(T169, tree(T174, T171, T175), tree(T174, T171, T176)) → P44_IN_AGAA(T174, T169, T175, T176)
P44_IN_AGAA(T174, T169, T175, T176) → U4_AGAA(T174, T169, T175, T176, less46_in_ag(T174, T169))
P44_IN_AGAA(T174, T169, T175, T176) → LESS46_IN_AG(T174, T169)
LESS46_IN_AG(s(T194), s(T193)) → U3_AG(T194, T193, less46_in_ag(T194, T193))
LESS46_IN_AG(s(T194), s(T193)) → LESS46_IN_AG(T194, T193)
P44_IN_AGAA(T174, T169, T179, T180) → U5_AGAA(T174, T169, T179, T180, lessc46_in_ag(T174, T169))
U5_AGAA(T174, T169, T179, T180, lessc46_out_ag(T174, T169)) → U6_AGAA(T174, T169, T179, T180, delete1_in_gaa(T169, T179, T180))
U5_AGAA(T174, T169, T179, T180, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169, T179, T180)
DELETE1_IN_GAA(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) → U23_GAA(T218, T219, T209, T220, delete1_in_gaa(0, T219, T220))
DELETE1_IN_GAA(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) → DELETE1_IN_GAA(0, T219, T220)
DELETE1_IN_GAA(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) → U24_GAA(T231, T233, T234, T209, T235, p65_in_gaaa(T231, T233, T234, T235))
DELETE1_IN_GAA(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) → P65_IN_GAAA(T231, T233, T234, T235)
P65_IN_GAAA(T231, T233, T234, T235) → U12_GAAA(T231, T233, T234, T235, less34_in_ga(T231, T233))
P65_IN_GAAA(T231, T233, T234, T235) → LESS34_IN_GA(T231, T233)
P65_IN_GAAA(T231, T233, T238, T239) → U13_GAAA(T231, T233, T238, T239, lessc34_in_ga(T231, T233))
U13_GAAA(T231, T233, T238, T239, lessc34_out_ga(T231, T233)) → U14_GAAA(T231, T233, T238, T239, delete1_in_gaa(s(T231), T238, T239))
U13_GAAA(T231, T233, T238, T239, lessc34_out_ga(T231, T233)) → DELETE1_IN_GAA(s(T231), T238, T239)
DELETE1_IN_GAA(T256, tree(T261, T258, T262), tree(T261, T258, T263)) → U25_GAA(T256, T261, T258, T262, T263, p44_in_agaa(T261, T256, T262, T263))
DELETE1_IN_GAA(T271, tree(T276, T273, T277), tree(T276, T273, T278)) → U26_GAA(T271, T276, T273, T277, T278, p72_in_agaa(T276, T271, T277, T278))
DELETE1_IN_GAA(T271, tree(T276, T273, T277), tree(T276, T273, T278)) → P72_IN_AGAA(T276, T271, T277, T278)
P72_IN_AGAA(0, s(T283), T284, T285) → U10_AGAA(T283, T284, T285, delete1_in_gaa(s(T283), T284, T285))
P72_IN_AGAA(0, s(T283), T284, T285) → DELETE1_IN_GAA(s(T283), T284, T285)
DELETE1_IN_GAA(T314, tree(T314, T315, tree(T356, T362, T358)), tree(T363, T315, tree(T356, T364, T361))) → U27_GAA(T314, T315, T356, T362, T358, T363, T364, T361, delmin19_in_aaa(T362, T363, T364))
DELETE1_IN_GAA(T389, tree(T394, T395, T392), tree(T394, T396, T392)) → U28_GAA(T389, T394, T395, T392, T396, p32_in_gaaa(T389, T394, T395, T396))
DELETE1_IN_GAA(T409, tree(T414, T411, T415), tree(T414, T411, T416)) → U29_GAA(T409, T414, T411, T415, T416, p72_in_agaa(T414, T409, T415, T416))
P72_IN_AGAA(s(T296), s(T295), T297, T298) → U11_AGAA(T296, T295, T297, T298, p79_in_agaa(T296, T295, T297, T298))
P72_IN_AGAA(s(T296), s(T295), T297, T298) → P79_IN_AGAA(T296, T295, T297, T298)
P79_IN_AGAA(T296, T295, T297, T298) → U15_AGAA(T296, T295, T297, T298, less46_in_ag(T296, T295))
P79_IN_AGAA(T296, T295, T297, T298) → LESS46_IN_AG(T296, T295)
P79_IN_AGAA(T296, T295, T301, T302) → U16_AGAA(T296, T295, T301, T302, lessc46_in_ag(T296, T295))
U16_AGAA(T296, T295, T301, T302, lessc46_out_ag(T296, T295)) → U17_AGAA(T296, T295, T301, T302, delete1_in_gaa(s(T295), T301, T302))
U16_AGAA(T296, T295, T301, T302, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295), T301, T302)
DELETE1_IN_GAA(0, tree(s(T436), T437, T427), tree(s(T436), T438, T427)) → U30_GAA(T436, T437, T427, T438, delete1_in_gaa(0, T437, T438))
DELETE1_IN_GAA(s(T449), tree(s(T451), T452, T427), tree(s(T451), T453, T427)) → U31_GAA(T449, T451, T452, T427, T453, p65_in_gaaa(T449, T451, T452, T453))
DELETE1_IN_GAA(T466, tree(T471, T468, T472), tree(T471, T468, T473)) → U32_GAA(T466, T471, T468, T472, T473, p72_in_agaa(T471, T466, T472, T473))
DELETE1_IN_GAA(T481, tree(T486, T483, T487), tree(T486, T483, T488)) → U33_GAA(T481, T486, T483, T487, T488, p116_in_agaa(T486, T481, T487, T488))
DELETE1_IN_GAA(T481, tree(T486, T483, T487), tree(T486, T483, T488)) → P116_IN_AGAA(T486, T481, T487, T488)
P116_IN_AGAA(0, s(T493), T494, T495) → U18_AGAA(T493, T494, T495, delete1_in_gaa(s(T493), T494, T495))
P116_IN_AGAA(0, s(T493), T494, T495) → DELETE1_IN_GAA(s(T493), T494, T495)
DELETE1_IN_GAA(T520, tree(T520, T521, tree(T562, T568, T564)), tree(T569, T521, tree(T562, T570, T567))) → U34_GAA(T520, T521, T562, T568, T564, T569, T570, T567, delmin19_in_aaa(T568, T569, T570))
DELETE1_IN_GAA(T595, tree(T600, T601, T598), tree(T600, T602, T598)) → U35_GAA(T595, T600, T601, T598, T602, p32_in_gaaa(T595, T600, T601, T602))
DELETE1_IN_GAA(T615, tree(T620, T617, T621), tree(T620, T617, T622)) → U36_GAA(T615, T620, T617, T621, T622, p116_in_agaa(T620, T615, T621, T622))
P116_IN_AGAA(s(T506), s(T505), T507, T508) → U19_AGAA(T506, T505, T507, T508, p79_in_agaa(T506, T505, T507, T508))
P116_IN_AGAA(s(T506), s(T505), T507, T508) → P79_IN_AGAA(T506, T505, T507, T508)
DELETE1_IN_GAA(0, tree(s(T642), T643, T633), tree(s(T642), T644, T633)) → U37_GAA(T642, T643, T633, T644, delete1_in_gaa(0, T643, T644))
DELETE1_IN_GAA(s(T655), tree(s(T657), T658, T633), tree(s(T657), T659, T633)) → U38_GAA(T655, T657, T658, T633, T659, p65_in_gaaa(T655, T657, T658, T659))
DELETE1_IN_GAA(T672, tree(T677, T674, T678), tree(T677, T674, T679)) → U39_GAA(T672, T677, T674, T678, T679, p116_in_agaa(T677, T672, T678, T679))
DELETE1_IN_GAA(s(T699), tree(0, T689, T700), tree(0, T689, T701)) → U40_GAA(T699, T689, T700, T701, delete1_in_gaa(s(T699), T700, T701))
DELETE1_IN_GAA(s(T699), tree(0, T689, T700), tree(0, T689, T701)) → DELETE1_IN_GAA(s(T699), T700, T701)
DELETE1_IN_GAA(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) → U41_GAA(T711, T712, T689, T713, T714, p79_in_agaa(T712, T711, T713, T714))
DELETE1_IN_GAA(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) → P79_IN_AGAA(T712, T711, T713, T714)
DELETE1_IN_GAA(T722, tree(T722, T723, tree(T764, T770, T766)), tree(T771, T723, tree(T764, T772, T769))) → U42_GAA(T722, T723, T764, T770, T766, T771, T772, T769, delmin19_in_aaa(T770, T771, T772))
DELETE1_IN_GAA(T797, tree(T802, T803, T800), tree(T802, T804, T800)) → U43_GAA(T797, T802, T803, T800, T804, p32_in_gaaa(T797, T802, T803, T804))
DELETE1_IN_GAA(T817, tree(T822, T819, T823), tree(T822, T819, T824)) → U44_GAA(T817, T822, T819, T823, T824, p116_in_agaa(T822, T817, T823, T824))
DELETE1_IN_GAA(0, tree(s(T844), T845, T835), tree(s(T844), T846, T835)) → U45_GAA(T844, T845, T835, T846, delete1_in_gaa(0, T845, T846))
DELETE1_IN_GAA(s(T857), tree(s(T859), T860, T835), tree(s(T859), T861, T835)) → U46_GAA(T857, T859, T860, T835, T861, p65_in_gaaa(T857, T859, T860, T861))
DELETE1_IN_GAA(T874, tree(T879, T876, T880), tree(T879, T876, T881)) → U47_GAA(T874, T879, T876, T880, T881, p116_in_agaa(T879, T874, T880, T881))
DELETE1_IN_GAA(s(T901), tree(0, T891, T902), tree(0, T891, T903)) → U48_GAA(T901, T891, T902, T903, delete1_in_gaa(s(T901), T902, T903))
DELETE1_IN_GAA(s(T913), tree(s(T914), T891, T915), tree(s(T914), T891, T916)) → U49_GAA(T913, T914, T891, T915, T916, p79_in_agaa(T914, T913, T915, T916))

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
delete1_in_gaa(x1, x2, x3)  =  delete1_in_gaa(x1)
delmin19_in_aaa(x1, x2, x3)  =  delmin19_in_aaa
p32_in_gaaa(x1, x2, x3, x4)  =  p32_in_gaaa(x1)
less34_in_ga(x1, x2)  =  less34_in_ga(x1)
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
p44_in_agaa(x1, x2, x3, x4)  =  p44_in_agaa(x2)
less46_in_ag(x1, x2)  =  less46_in_ag(x2)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
p65_in_gaaa(x1, x2, x3, x4)  =  p65_in_gaaa(x1)
p72_in_agaa(x1, x2, x3, x4)  =  p72_in_agaa(x2)
p79_in_agaa(x1, x2, x3, x4)  =  p79_in_agaa(x2)
p116_in_agaa(x1, x2, x3, x4)  =  p116_in_agaa(x2)
DELETE1_IN_GAA(x1, x2, x3)  =  DELETE1_IN_GAA(x1)
U20_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U20_GAA(x1, x9)
DELMIN19_IN_AAA(x1, x2, x3)  =  DELMIN19_IN_AAA
U1_AAA(x1, x2, x3, x4, x5, x6, x7)  =  U1_AAA(x7)
U21_GAA(x1, x2, x3, x4, x5, x6)  =  U21_GAA(x1, x6)
P32_IN_GAAA(x1, x2, x3, x4)  =  P32_IN_GAAA(x1)
U7_GAAA(x1, x2, x3, x4, x5)  =  U7_GAAA(x1, x5)
LESS34_IN_GA(x1, x2)  =  LESS34_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x1, x5)
U9_GAAA(x1, x2, x3, x4, x5)  =  U9_GAAA(x1, x5)
U22_GAA(x1, x2, x3, x4, x5, x6)  =  U22_GAA(x1, x6)
P44_IN_AGAA(x1, x2, x3, x4)  =  P44_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
LESS46_IN_AG(x1, x2)  =  LESS46_IN_AG(x2)
U3_AG(x1, x2, x3)  =  U3_AG(x2, x3)
U5_AGAA(x1, x2, x3, x4, x5)  =  U5_AGAA(x2, x5)
U6_AGAA(x1, x2, x3, x4, x5)  =  U6_AGAA(x1, x2, x5)
U23_GAA(x1, x2, x3, x4, x5)  =  U23_GAA(x5)
U24_GAA(x1, x2, x3, x4, x5, x6)  =  U24_GAA(x1, x6)
P65_IN_GAAA(x1, x2, x3, x4)  =  P65_IN_GAAA(x1)
U12_GAAA(x1, x2, x3, x4, x5)  =  U12_GAAA(x1, x5)
U13_GAAA(x1, x2, x3, x4, x5)  =  U13_GAAA(x1, x5)
U14_GAAA(x1, x2, x3, x4, x5)  =  U14_GAAA(x1, x5)
U25_GAA(x1, x2, x3, x4, x5, x6)  =  U25_GAA(x1, x6)
U26_GAA(x1, x2, x3, x4, x5, x6)  =  U26_GAA(x1, x6)
P72_IN_AGAA(x1, x2, x3, x4)  =  P72_IN_AGAA(x2)
U10_AGAA(x1, x2, x3, x4)  =  U10_AGAA(x1, x4)
U27_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U27_GAA(x1, x9)
U28_GAA(x1, x2, x3, x4, x5, x6)  =  U28_GAA(x1, x6)
U29_GAA(x1, x2, x3, x4, x5, x6)  =  U29_GAA(x1, x6)
U11_AGAA(x1, x2, x3, x4, x5)  =  U11_AGAA(x2, x5)
P79_IN_AGAA(x1, x2, x3, x4)  =  P79_IN_AGAA(x2)
U15_AGAA(x1, x2, x3, x4, x5)  =  U15_AGAA(x2, x5)
U16_AGAA(x1, x2, x3, x4, x5)  =  U16_AGAA(x2, x5)
U17_AGAA(x1, x2, x3, x4, x5)  =  U17_AGAA(x1, x2, x5)
U30_GAA(x1, x2, x3, x4, x5)  =  U30_GAA(x5)
U31_GAA(x1, x2, x3, x4, x5, x6)  =  U31_GAA(x1, x6)
U32_GAA(x1, x2, x3, x4, x5, x6)  =  U32_GAA(x1, x6)
U33_GAA(x1, x2, x3, x4, x5, x6)  =  U33_GAA(x1, x6)
P116_IN_AGAA(x1, x2, x3, x4)  =  P116_IN_AGAA(x2)
U18_AGAA(x1, x2, x3, x4)  =  U18_AGAA(x1, x4)
U34_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U34_GAA(x1, x9)
U35_GAA(x1, x2, x3, x4, x5, x6)  =  U35_GAA(x1, x6)
U36_GAA(x1, x2, x3, x4, x5, x6)  =  U36_GAA(x1, x6)
U19_AGAA(x1, x2, x3, x4, x5)  =  U19_AGAA(x2, x5)
U37_GAA(x1, x2, x3, x4, x5)  =  U37_GAA(x5)
U38_GAA(x1, x2, x3, x4, x5, x6)  =  U38_GAA(x1, x6)
U39_GAA(x1, x2, x3, x4, x5, x6)  =  U39_GAA(x1, x6)
U40_GAA(x1, x2, x3, x4, x5)  =  U40_GAA(x1, x5)
U41_GAA(x1, x2, x3, x4, x5, x6)  =  U41_GAA(x1, x6)
U42_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U42_GAA(x1, x9)
U43_GAA(x1, x2, x3, x4, x5, x6)  =  U43_GAA(x1, x6)
U44_GAA(x1, x2, x3, x4, x5, x6)  =  U44_GAA(x1, x6)
U45_GAA(x1, x2, x3, x4, x5)  =  U45_GAA(x5)
U46_GAA(x1, x2, x3, x4, x5, x6)  =  U46_GAA(x1, x6)
U47_GAA(x1, x2, x3, x4, x5, x6)  =  U47_GAA(x1, x6)
U48_GAA(x1, x2, x3, x4, x5)  =  U48_GAA(x1, x5)
U49_GAA(x1, x2, x3, x4, x5, x6)  =  U49_GAA(x1, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) → U20_GAA(T17, T18, T59, T65, T61, T66, T67, T64, delmin19_in_aaa(T65, T66, T67))
DELETE1_IN_GAA(T17, tree(T17, T18, tree(T59, T65, T61)), tree(T66, T18, tree(T59, T67, T64))) → DELMIN19_IN_AAA(T65, T66, T67)
DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → U1_AAA(T94, T100, T96, T101, T102, T99, delmin19_in_aaa(T100, T101, T102))
DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → DELMIN19_IN_AAA(T100, T101, T102)
DELETE1_IN_GAA(T127, tree(T132, T133, T130), tree(T132, T134, T130)) → U21_GAA(T127, T132, T133, T130, T134, p32_in_gaaa(T127, T132, T133, T134))
DELETE1_IN_GAA(T127, tree(T132, T133, T130), tree(T132, T134, T130)) → P32_IN_GAAA(T127, T132, T133, T134)
P32_IN_GAAA(T127, T132, T133, T134) → U7_GAAA(T127, T132, T133, T134, less34_in_ga(T127, T132))
P32_IN_GAAA(T127, T132, T133, T134) → LESS34_IN_GA(T127, T132)
LESS34_IN_GA(s(T150), s(T152)) → U2_GA(T150, T152, less34_in_ga(T150, T152))
LESS34_IN_GA(s(T150), s(T152)) → LESS34_IN_GA(T150, T152)
P32_IN_GAAA(T127, T132, T137, T138) → U8_GAAA(T127, T132, T137, T138, lessc34_in_ga(T127, T132))
U8_GAAA(T127, T132, T137, T138, lessc34_out_ga(T127, T132)) → U9_GAAA(T127, T132, T137, T138, delete1_in_gaa(T127, T137, T138))
U8_GAAA(T127, T132, T137, T138, lessc34_out_ga(T127, T132)) → DELETE1_IN_GAA(T127, T137, T138)
DELETE1_IN_GAA(T169, tree(T174, T171, T175), tree(T174, T171, T176)) → U22_GAA(T169, T174, T171, T175, T176, p44_in_agaa(T174, T169, T175, T176))
DELETE1_IN_GAA(T169, tree(T174, T171, T175), tree(T174, T171, T176)) → P44_IN_AGAA(T174, T169, T175, T176)
P44_IN_AGAA(T174, T169, T175, T176) → U4_AGAA(T174, T169, T175, T176, less46_in_ag(T174, T169))
P44_IN_AGAA(T174, T169, T175, T176) → LESS46_IN_AG(T174, T169)
LESS46_IN_AG(s(T194), s(T193)) → U3_AG(T194, T193, less46_in_ag(T194, T193))
LESS46_IN_AG(s(T194), s(T193)) → LESS46_IN_AG(T194, T193)
P44_IN_AGAA(T174, T169, T179, T180) → U5_AGAA(T174, T169, T179, T180, lessc46_in_ag(T174, T169))
U5_AGAA(T174, T169, T179, T180, lessc46_out_ag(T174, T169)) → U6_AGAA(T174, T169, T179, T180, delete1_in_gaa(T169, T179, T180))
U5_AGAA(T174, T169, T179, T180, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169, T179, T180)
DELETE1_IN_GAA(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) → U23_GAA(T218, T219, T209, T220, delete1_in_gaa(0, T219, T220))
DELETE1_IN_GAA(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) → DELETE1_IN_GAA(0, T219, T220)
DELETE1_IN_GAA(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) → U24_GAA(T231, T233, T234, T209, T235, p65_in_gaaa(T231, T233, T234, T235))
DELETE1_IN_GAA(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) → P65_IN_GAAA(T231, T233, T234, T235)
P65_IN_GAAA(T231, T233, T234, T235) → U12_GAAA(T231, T233, T234, T235, less34_in_ga(T231, T233))
P65_IN_GAAA(T231, T233, T234, T235) → LESS34_IN_GA(T231, T233)
P65_IN_GAAA(T231, T233, T238, T239) → U13_GAAA(T231, T233, T238, T239, lessc34_in_ga(T231, T233))
U13_GAAA(T231, T233, T238, T239, lessc34_out_ga(T231, T233)) → U14_GAAA(T231, T233, T238, T239, delete1_in_gaa(s(T231), T238, T239))
U13_GAAA(T231, T233, T238, T239, lessc34_out_ga(T231, T233)) → DELETE1_IN_GAA(s(T231), T238, T239)
DELETE1_IN_GAA(T256, tree(T261, T258, T262), tree(T261, T258, T263)) → U25_GAA(T256, T261, T258, T262, T263, p44_in_agaa(T261, T256, T262, T263))
DELETE1_IN_GAA(T271, tree(T276, T273, T277), tree(T276, T273, T278)) → U26_GAA(T271, T276, T273, T277, T278, p72_in_agaa(T276, T271, T277, T278))
DELETE1_IN_GAA(T271, tree(T276, T273, T277), tree(T276, T273, T278)) → P72_IN_AGAA(T276, T271, T277, T278)
P72_IN_AGAA(0, s(T283), T284, T285) → U10_AGAA(T283, T284, T285, delete1_in_gaa(s(T283), T284, T285))
P72_IN_AGAA(0, s(T283), T284, T285) → DELETE1_IN_GAA(s(T283), T284, T285)
DELETE1_IN_GAA(T314, tree(T314, T315, tree(T356, T362, T358)), tree(T363, T315, tree(T356, T364, T361))) → U27_GAA(T314, T315, T356, T362, T358, T363, T364, T361, delmin19_in_aaa(T362, T363, T364))
DELETE1_IN_GAA(T389, tree(T394, T395, T392), tree(T394, T396, T392)) → U28_GAA(T389, T394, T395, T392, T396, p32_in_gaaa(T389, T394, T395, T396))
DELETE1_IN_GAA(T409, tree(T414, T411, T415), tree(T414, T411, T416)) → U29_GAA(T409, T414, T411, T415, T416, p72_in_agaa(T414, T409, T415, T416))
P72_IN_AGAA(s(T296), s(T295), T297, T298) → U11_AGAA(T296, T295, T297, T298, p79_in_agaa(T296, T295, T297, T298))
P72_IN_AGAA(s(T296), s(T295), T297, T298) → P79_IN_AGAA(T296, T295, T297, T298)
P79_IN_AGAA(T296, T295, T297, T298) → U15_AGAA(T296, T295, T297, T298, less46_in_ag(T296, T295))
P79_IN_AGAA(T296, T295, T297, T298) → LESS46_IN_AG(T296, T295)
P79_IN_AGAA(T296, T295, T301, T302) → U16_AGAA(T296, T295, T301, T302, lessc46_in_ag(T296, T295))
U16_AGAA(T296, T295, T301, T302, lessc46_out_ag(T296, T295)) → U17_AGAA(T296, T295, T301, T302, delete1_in_gaa(s(T295), T301, T302))
U16_AGAA(T296, T295, T301, T302, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295), T301, T302)
DELETE1_IN_GAA(0, tree(s(T436), T437, T427), tree(s(T436), T438, T427)) → U30_GAA(T436, T437, T427, T438, delete1_in_gaa(0, T437, T438))
DELETE1_IN_GAA(s(T449), tree(s(T451), T452, T427), tree(s(T451), T453, T427)) → U31_GAA(T449, T451, T452, T427, T453, p65_in_gaaa(T449, T451, T452, T453))
DELETE1_IN_GAA(T466, tree(T471, T468, T472), tree(T471, T468, T473)) → U32_GAA(T466, T471, T468, T472, T473, p72_in_agaa(T471, T466, T472, T473))
DELETE1_IN_GAA(T481, tree(T486, T483, T487), tree(T486, T483, T488)) → U33_GAA(T481, T486, T483, T487, T488, p116_in_agaa(T486, T481, T487, T488))
DELETE1_IN_GAA(T481, tree(T486, T483, T487), tree(T486, T483, T488)) → P116_IN_AGAA(T486, T481, T487, T488)
P116_IN_AGAA(0, s(T493), T494, T495) → U18_AGAA(T493, T494, T495, delete1_in_gaa(s(T493), T494, T495))
P116_IN_AGAA(0, s(T493), T494, T495) → DELETE1_IN_GAA(s(T493), T494, T495)
DELETE1_IN_GAA(T520, tree(T520, T521, tree(T562, T568, T564)), tree(T569, T521, tree(T562, T570, T567))) → U34_GAA(T520, T521, T562, T568, T564, T569, T570, T567, delmin19_in_aaa(T568, T569, T570))
DELETE1_IN_GAA(T595, tree(T600, T601, T598), tree(T600, T602, T598)) → U35_GAA(T595, T600, T601, T598, T602, p32_in_gaaa(T595, T600, T601, T602))
DELETE1_IN_GAA(T615, tree(T620, T617, T621), tree(T620, T617, T622)) → U36_GAA(T615, T620, T617, T621, T622, p116_in_agaa(T620, T615, T621, T622))
P116_IN_AGAA(s(T506), s(T505), T507, T508) → U19_AGAA(T506, T505, T507, T508, p79_in_agaa(T506, T505, T507, T508))
P116_IN_AGAA(s(T506), s(T505), T507, T508) → P79_IN_AGAA(T506, T505, T507, T508)
DELETE1_IN_GAA(0, tree(s(T642), T643, T633), tree(s(T642), T644, T633)) → U37_GAA(T642, T643, T633, T644, delete1_in_gaa(0, T643, T644))
DELETE1_IN_GAA(s(T655), tree(s(T657), T658, T633), tree(s(T657), T659, T633)) → U38_GAA(T655, T657, T658, T633, T659, p65_in_gaaa(T655, T657, T658, T659))
DELETE1_IN_GAA(T672, tree(T677, T674, T678), tree(T677, T674, T679)) → U39_GAA(T672, T677, T674, T678, T679, p116_in_agaa(T677, T672, T678, T679))
DELETE1_IN_GAA(s(T699), tree(0, T689, T700), tree(0, T689, T701)) → U40_GAA(T699, T689, T700, T701, delete1_in_gaa(s(T699), T700, T701))
DELETE1_IN_GAA(s(T699), tree(0, T689, T700), tree(0, T689, T701)) → DELETE1_IN_GAA(s(T699), T700, T701)
DELETE1_IN_GAA(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) → U41_GAA(T711, T712, T689, T713, T714, p79_in_agaa(T712, T711, T713, T714))
DELETE1_IN_GAA(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) → P79_IN_AGAA(T712, T711, T713, T714)
DELETE1_IN_GAA(T722, tree(T722, T723, tree(T764, T770, T766)), tree(T771, T723, tree(T764, T772, T769))) → U42_GAA(T722, T723, T764, T770, T766, T771, T772, T769, delmin19_in_aaa(T770, T771, T772))
DELETE1_IN_GAA(T797, tree(T802, T803, T800), tree(T802, T804, T800)) → U43_GAA(T797, T802, T803, T800, T804, p32_in_gaaa(T797, T802, T803, T804))
DELETE1_IN_GAA(T817, tree(T822, T819, T823), tree(T822, T819, T824)) → U44_GAA(T817, T822, T819, T823, T824, p116_in_agaa(T822, T817, T823, T824))
DELETE1_IN_GAA(0, tree(s(T844), T845, T835), tree(s(T844), T846, T835)) → U45_GAA(T844, T845, T835, T846, delete1_in_gaa(0, T845, T846))
DELETE1_IN_GAA(s(T857), tree(s(T859), T860, T835), tree(s(T859), T861, T835)) → U46_GAA(T857, T859, T860, T835, T861, p65_in_gaaa(T857, T859, T860, T861))
DELETE1_IN_GAA(T874, tree(T879, T876, T880), tree(T879, T876, T881)) → U47_GAA(T874, T879, T876, T880, T881, p116_in_agaa(T879, T874, T880, T881))
DELETE1_IN_GAA(s(T901), tree(0, T891, T902), tree(0, T891, T903)) → U48_GAA(T901, T891, T902, T903, delete1_in_gaa(s(T901), T902, T903))
DELETE1_IN_GAA(s(T913), tree(s(T914), T891, T915), tree(s(T914), T891, T916)) → U49_GAA(T913, T914, T891, T915, T916, p79_in_agaa(T914, T913, T915, T916))

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
delete1_in_gaa(x1, x2, x3)  =  delete1_in_gaa(x1)
delmin19_in_aaa(x1, x2, x3)  =  delmin19_in_aaa
p32_in_gaaa(x1, x2, x3, x4)  =  p32_in_gaaa(x1)
less34_in_ga(x1, x2)  =  less34_in_ga(x1)
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
p44_in_agaa(x1, x2, x3, x4)  =  p44_in_agaa(x2)
less46_in_ag(x1, x2)  =  less46_in_ag(x2)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
p65_in_gaaa(x1, x2, x3, x4)  =  p65_in_gaaa(x1)
p72_in_agaa(x1, x2, x3, x4)  =  p72_in_agaa(x2)
p79_in_agaa(x1, x2, x3, x4)  =  p79_in_agaa(x2)
p116_in_agaa(x1, x2, x3, x4)  =  p116_in_agaa(x2)
DELETE1_IN_GAA(x1, x2, x3)  =  DELETE1_IN_GAA(x1)
U20_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U20_GAA(x1, x9)
DELMIN19_IN_AAA(x1, x2, x3)  =  DELMIN19_IN_AAA
U1_AAA(x1, x2, x3, x4, x5, x6, x7)  =  U1_AAA(x7)
U21_GAA(x1, x2, x3, x4, x5, x6)  =  U21_GAA(x1, x6)
P32_IN_GAAA(x1, x2, x3, x4)  =  P32_IN_GAAA(x1)
U7_GAAA(x1, x2, x3, x4, x5)  =  U7_GAAA(x1, x5)
LESS34_IN_GA(x1, x2)  =  LESS34_IN_GA(x1)
U2_GA(x1, x2, x3)  =  U2_GA(x1, x3)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x1, x5)
U9_GAAA(x1, x2, x3, x4, x5)  =  U9_GAAA(x1, x5)
U22_GAA(x1, x2, x3, x4, x5, x6)  =  U22_GAA(x1, x6)
P44_IN_AGAA(x1, x2, x3, x4)  =  P44_IN_AGAA(x2)
U4_AGAA(x1, x2, x3, x4, x5)  =  U4_AGAA(x2, x5)
LESS46_IN_AG(x1, x2)  =  LESS46_IN_AG(x2)
U3_AG(x1, x2, x3)  =  U3_AG(x2, x3)
U5_AGAA(x1, x2, x3, x4, x5)  =  U5_AGAA(x2, x5)
U6_AGAA(x1, x2, x3, x4, x5)  =  U6_AGAA(x1, x2, x5)
U23_GAA(x1, x2, x3, x4, x5)  =  U23_GAA(x5)
U24_GAA(x1, x2, x3, x4, x5, x6)  =  U24_GAA(x1, x6)
P65_IN_GAAA(x1, x2, x3, x4)  =  P65_IN_GAAA(x1)
U12_GAAA(x1, x2, x3, x4, x5)  =  U12_GAAA(x1, x5)
U13_GAAA(x1, x2, x3, x4, x5)  =  U13_GAAA(x1, x5)
U14_GAAA(x1, x2, x3, x4, x5)  =  U14_GAAA(x1, x5)
U25_GAA(x1, x2, x3, x4, x5, x6)  =  U25_GAA(x1, x6)
U26_GAA(x1, x2, x3, x4, x5, x6)  =  U26_GAA(x1, x6)
P72_IN_AGAA(x1, x2, x3, x4)  =  P72_IN_AGAA(x2)
U10_AGAA(x1, x2, x3, x4)  =  U10_AGAA(x1, x4)
U27_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U27_GAA(x1, x9)
U28_GAA(x1, x2, x3, x4, x5, x6)  =  U28_GAA(x1, x6)
U29_GAA(x1, x2, x3, x4, x5, x6)  =  U29_GAA(x1, x6)
U11_AGAA(x1, x2, x3, x4, x5)  =  U11_AGAA(x2, x5)
P79_IN_AGAA(x1, x2, x3, x4)  =  P79_IN_AGAA(x2)
U15_AGAA(x1, x2, x3, x4, x5)  =  U15_AGAA(x2, x5)
U16_AGAA(x1, x2, x3, x4, x5)  =  U16_AGAA(x2, x5)
U17_AGAA(x1, x2, x3, x4, x5)  =  U17_AGAA(x1, x2, x5)
U30_GAA(x1, x2, x3, x4, x5)  =  U30_GAA(x5)
U31_GAA(x1, x2, x3, x4, x5, x6)  =  U31_GAA(x1, x6)
U32_GAA(x1, x2, x3, x4, x5, x6)  =  U32_GAA(x1, x6)
U33_GAA(x1, x2, x3, x4, x5, x6)  =  U33_GAA(x1, x6)
P116_IN_AGAA(x1, x2, x3, x4)  =  P116_IN_AGAA(x2)
U18_AGAA(x1, x2, x3, x4)  =  U18_AGAA(x1, x4)
U34_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U34_GAA(x1, x9)
U35_GAA(x1, x2, x3, x4, x5, x6)  =  U35_GAA(x1, x6)
U36_GAA(x1, x2, x3, x4, x5, x6)  =  U36_GAA(x1, x6)
U19_AGAA(x1, x2, x3, x4, x5)  =  U19_AGAA(x2, x5)
U37_GAA(x1, x2, x3, x4, x5)  =  U37_GAA(x5)
U38_GAA(x1, x2, x3, x4, x5, x6)  =  U38_GAA(x1, x6)
U39_GAA(x1, x2, x3, x4, x5, x6)  =  U39_GAA(x1, x6)
U40_GAA(x1, x2, x3, x4, x5)  =  U40_GAA(x1, x5)
U41_GAA(x1, x2, x3, x4, x5, x6)  =  U41_GAA(x1, x6)
U42_GAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U42_GAA(x1, x9)
U43_GAA(x1, x2, x3, x4, x5, x6)  =  U43_GAA(x1, x6)
U44_GAA(x1, x2, x3, x4, x5, x6)  =  U44_GAA(x1, x6)
U45_GAA(x1, x2, x3, x4, x5)  =  U45_GAA(x5)
U46_GAA(x1, x2, x3, x4, x5, x6)  =  U46_GAA(x1, x6)
U47_GAA(x1, x2, x3, x4, x5, x6)  =  U47_GAA(x1, x6)
U48_GAA(x1, x2, x3, x4, x5)  =  U48_GAA(x1, x5)
U49_GAA(x1, x2, x3, x4, x5, x6)  =  U49_GAA(x1, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 50 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS46_IN_AG(s(T194), s(T193)) → LESS46_IN_AG(T194, T193)

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
LESS46_IN_AG(x1, x2)  =  LESS46_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS46_IN_AG(s(T194), s(T193)) → LESS46_IN_AG(T194, T193)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS46_IN_AG(x1, x2)  =  LESS46_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS46_IN_AG(s(T193)) → LESS46_IN_AG(T193)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS46_IN_AG(s(T193)) → LESS46_IN_AG(T193)
    The graph contains the following edges 1 > 1

(13) YES

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS34_IN_GA(s(T150), s(T152)) → LESS34_IN_GA(T150, T152)

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
LESS34_IN_GA(x1, x2)  =  LESS34_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS34_IN_GA(s(T150), s(T152)) → LESS34_IN_GA(T150, T152)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS34_IN_GA(x1, x2)  =  LESS34_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS34_IN_GA(s(T150)) → LESS34_IN_GA(T150)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS34_IN_GA(s(T150)) → LESS34_IN_GA(T150)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → DELMIN19_IN_AAA(T100, T101, T102)

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
DELMIN19_IN_AAA(x1, x2, x3)  =  DELMIN19_IN_AAA

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELMIN19_IN_AAA(tree(T94, T100, T96), T101, tree(T94, T102, T99)) → DELMIN19_IN_AAA(T100, T101, T102)

R is empty.
The argument filtering Pi contains the following mapping:
DELMIN19_IN_AAA(x1, x2, x3)  =  DELMIN19_IN_AAA

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELMIN19_IN_AAADELMIN19_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = DELMIN19_IN_AAA evaluates to t =DELMIN19_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from DELMIN19_IN_AAA to DELMIN19_IN_AAA.



(27) NO

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127, tree(T132, T133, T130), tree(T132, T134, T130)) → P32_IN_GAAA(T127, T132, T133, T134)
P32_IN_GAAA(T127, T132, T137, T138) → U8_GAAA(T127, T132, T137, T138, lessc34_in_ga(T127, T132))
U8_GAAA(T127, T132, T137, T138, lessc34_out_ga(T127, T132)) → DELETE1_IN_GAA(T127, T137, T138)
DELETE1_IN_GAA(T169, tree(T174, T171, T175), tree(T174, T171, T176)) → P44_IN_AGAA(T174, T169, T175, T176)
P44_IN_AGAA(T174, T169, T179, T180) → U5_AGAA(T174, T169, T179, T180, lessc46_in_ag(T174, T169))
U5_AGAA(T174, T169, T179, T180, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169, T179, T180)
DELETE1_IN_GAA(0, tree(s(T218), T219, T209), tree(s(T218), T220, T209)) → DELETE1_IN_GAA(0, T219, T220)
DELETE1_IN_GAA(T271, tree(T276, T273, T277), tree(T276, T273, T278)) → P72_IN_AGAA(T276, T271, T277, T278)
P72_IN_AGAA(0, s(T283), T284, T285) → DELETE1_IN_GAA(s(T283), T284, T285)
DELETE1_IN_GAA(s(T231), tree(s(T233), T234, T209), tree(s(T233), T235, T209)) → P65_IN_GAAA(T231, T233, T234, T235)
P65_IN_GAAA(T231, T233, T238, T239) → U13_GAAA(T231, T233, T238, T239, lessc34_in_ga(T231, T233))
U13_GAAA(T231, T233, T238, T239, lessc34_out_ga(T231, T233)) → DELETE1_IN_GAA(s(T231), T238, T239)
DELETE1_IN_GAA(T481, tree(T486, T483, T487), tree(T486, T483, T488)) → P116_IN_AGAA(T486, T481, T487, T488)
P116_IN_AGAA(0, s(T493), T494, T495) → DELETE1_IN_GAA(s(T493), T494, T495)
DELETE1_IN_GAA(s(T699), tree(0, T689, T700), tree(0, T689, T701)) → DELETE1_IN_GAA(s(T699), T700, T701)
DELETE1_IN_GAA(s(T711), tree(s(T712), T689, T713), tree(s(T712), T689, T714)) → P79_IN_AGAA(T712, T711, T713, T714)
P79_IN_AGAA(T296, T295, T301, T302) → U16_AGAA(T296, T295, T301, T302, lessc46_in_ag(T296, T295))
U16_AGAA(T296, T295, T301, T302, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295), T301, T302)
P116_IN_AGAA(s(T506), s(T505), T507, T508) → P79_IN_AGAA(T506, T505, T507, T508)
P72_IN_AGAA(s(T296), s(T295), T297, T298) → P79_IN_AGAA(T296, T295, T297, T298)

The TRS R consists of the following rules:

lessc34_in_ga(0, s(T145)) → lessc34_out_ga(0, s(T145))
lessc34_in_ga(s(T150), s(T152)) → U82_ga(T150, T152, lessc34_in_ga(T150, T152))
U82_ga(T150, T152, lessc34_out_ga(T150, T152)) → lessc34_out_ga(s(T150), s(T152))
lessc46_in_ag(0, s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T194), s(T193)) → U83_ag(T194, T193, lessc46_in_ag(T194, T193))
U83_ag(T194, T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
lessc34_in_ga(x1, x2)  =  lessc34_in_ga(x1)
0  =  0
lessc34_out_ga(x1, x2)  =  lessc34_out_ga(x1)
U82_ga(x1, x2, x3)  =  U82_ga(x1, x3)
lessc46_in_ag(x1, x2)  =  lessc46_in_ag(x2)
lessc46_out_ag(x1, x2)  =  lessc46_out_ag(x1, x2)
U83_ag(x1, x2, x3)  =  U83_ag(x2, x3)
DELETE1_IN_GAA(x1, x2, x3)  =  DELETE1_IN_GAA(x1)
P32_IN_GAAA(x1, x2, x3, x4)  =  P32_IN_GAAA(x1)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x1, x5)
P44_IN_AGAA(x1, x2, x3, x4)  =  P44_IN_AGAA(x2)
U5_AGAA(x1, x2, x3, x4, x5)  =  U5_AGAA(x2, x5)
P65_IN_GAAA(x1, x2, x3, x4)  =  P65_IN_GAAA(x1)
U13_GAAA(x1, x2, x3, x4, x5)  =  U13_GAAA(x1, x5)
P72_IN_AGAA(x1, x2, x3, x4)  =  P72_IN_AGAA(x2)
P79_IN_AGAA(x1, x2, x3, x4)  =  P79_IN_AGAA(x2)
U16_AGAA(x1, x2, x3, x4, x5)  =  U16_AGAA(x2, x5)
P116_IN_AGAA(x1, x2, x3, x4)  =  P116_IN_AGAA(x2)

We have to consider all (P,R,Pi)-chains

(29) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
P32_IN_GAAA(T127) → U8_GAAA(T127, lessc34_in_ga(T127))
U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
P44_IN_AGAA(T169) → U5_AGAA(T169, lessc46_in_ag(T169))
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(T231) → U13_GAAA(T231, lessc34_in_ga(T231))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(T295) → U16_AGAA(T295, lessc46_in_ag(T295))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(31) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P32_IN_GAAA(T127) → U8_GAAA(T127, lessc34_in_ga(T127)) at position [1] we obtained the following new rules [LPAR04]:

P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
P44_IN_AGAA(T169) → U5_AGAA(T169, lessc46_in_ag(T169))
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(T231) → U13_GAAA(T231, lessc34_in_ga(T231))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(T295) → U16_AGAA(T295, lessc46_in_ag(T295))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(33) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P44_IN_AGAA(T169) → U5_AGAA(T169, lessc46_in_ag(T169)) at position [1] we obtained the following new rules [LPAR04]:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(T231) → U13_GAAA(T231, lessc34_in_ga(T231))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(T295) → U16_AGAA(T295, lessc46_in_ag(T295))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(35) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P65_IN_GAAA(T231) → U13_GAAA(T231, lessc34_in_ga(T231)) at position [1] we obtained the following new rules [LPAR04]:

P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(T295) → U16_AGAA(T295, lessc46_in_ag(T295))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(37) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P79_IN_AGAA(T295) → U16_AGAA(T295, lessc46_in_ag(T295)) at position [1] we obtained the following new rules [LPAR04]:

P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(39) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_GAAA(T127, lessc34_out_ga(T127)) → DELETE1_IN_GAA(T127) we obtained the following new rules [LPAR04]:

U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(41) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U5_AGAA(T169, lessc46_out_ag(T174, T169)) → DELETE1_IN_GAA(T169) we obtained the following new rules [LPAR04]:

U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127)
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(43) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule DELETE1_IN_GAA(T127) → P32_IN_GAAA(T127) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(0) → P32_IN_GAAA(0)
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
DELETE1_IN_GAA(0) → P32_IN_GAAA(0)
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(45) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(46) Complex Obligation (AND)

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169)
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(48) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule DELETE1_IN_GAA(T169) → P44_IN_AGAA(T169) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271)
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(50) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule DELETE1_IN_GAA(T271) → P72_IN_AGAA(T271) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(52) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U13_GAAA(T231, lessc34_out_ga(T231)) → DELETE1_IN_GAA(s(T231)) we obtained the following new rules [LPAR04]:

U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481)
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(54) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule DELETE1_IN_GAA(T481) → P116_IN_AGAA(T481) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(56) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U16_AGAA(T295, lessc46_out_ag(T296, T295)) → DELETE1_IN_GAA(s(T295)) we obtained the following new rules [LPAR04]:

U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231)
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(58) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule DELETE1_IN_GAA(s(T231)) → P65_IN_GAAA(T231) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(s(0)) → P65_IN_GAAA(0)
DELETE1_IN_GAA(s(s(y_0))) → P65_IN_GAAA(s(y_0))

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711)
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(0)) → P65_IN_GAAA(0)
DELETE1_IN_GAA(s(s(y_0))) → P65_IN_GAAA(s(y_0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(60) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule DELETE1_IN_GAA(s(T711)) → P79_IN_AGAA(T711) we obtained the following new rules [LPAR04]:

DELETE1_IN_GAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505)
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(0)) → P65_IN_GAAA(0)
DELETE1_IN_GAA(s(s(y_0))) → P65_IN_GAAA(s(y_0))
DELETE1_IN_GAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(62) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule P116_IN_AGAA(s(T505)) → P79_IN_AGAA(T505) we obtained the following new rules [LPAR04]:

P116_IN_AGAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295)
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(0)) → P65_IN_GAAA(0)
DELETE1_IN_GAA(s(s(y_0))) → P65_IN_GAAA(s(y_0))
DELETE1_IN_GAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))
P116_IN_AGAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(64) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule P72_IN_AGAA(s(T295)) → P79_IN_AGAA(T295) we obtained the following new rules [LPAR04]:

P72_IN_AGAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
U5_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(z0))
P44_IN_AGAA(s(x0)) → U5_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
U5_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(z0))
P72_IN_AGAA(s(T283)) → DELETE1_IN_GAA(s(T283))
P65_IN_GAAA(0) → U13_GAAA(0, lessc34_out_ga(0))
P116_IN_AGAA(s(T493)) → DELETE1_IN_GAA(s(T493))
DELETE1_IN_GAA(s(T699)) → DELETE1_IN_GAA(s(T699))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), lessc46_out_ag(0, s(x0)))
DELETE1_IN_GAA(s(z0)) → P32_IN_GAAA(s(z0))
P32_IN_GAAA(s(x0)) → U8_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
U8_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(z0))
P79_IN_AGAA(s(x0)) → U16_AGAA(s(x0), U83_ag(x0, lessc46_in_ag(x0)))
P65_IN_GAAA(s(x0)) → U13_GAAA(s(x0), U82_ga(x0, lessc34_in_ga(x0)))
DELETE1_IN_GAA(s(z0)) → P44_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(z0)) → P72_IN_AGAA(s(z0))
U13_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(s(0))
U13_GAAA(s(z0), lessc34_out_ga(s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(z0)) → P116_IN_AGAA(s(z0))
DELETE1_IN_GAA(s(0)) → P116_IN_AGAA(s(0))
DELETE1_IN_GAA(s(s(z0))) → P116_IN_AGAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(0, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
U16_AGAA(s(z0), lessc46_out_ag(x1, s(z0))) → DELETE1_IN_GAA(s(s(z0)))
DELETE1_IN_GAA(s(0)) → P65_IN_GAAA(0)
DELETE1_IN_GAA(s(s(y_0))) → P65_IN_GAAA(s(y_0))
DELETE1_IN_GAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))
P116_IN_AGAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))
P72_IN_AGAA(s(s(y_0))) → P79_IN_AGAA(s(y_0))

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(66) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = DELETE1_IN_GAA(s(T699)) evaluates to t =DELETE1_IN_GAA(s(T699))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from DELETE1_IN_GAA(s(T699)) to DELETE1_IN_GAA(s(T699)).



(67) NO

(68) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(0) → P32_IN_GAAA(0)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)

The TRS R consists of the following rules:

lessc34_in_ga(0) → lessc34_out_ga(0)
lessc34_in_ga(s(T150)) → U82_ga(T150, lessc34_in_ga(T150))
U82_ga(T150, lessc34_out_ga(T150)) → lessc34_out_ga(s(T150))
lessc46_in_ag(s(T187)) → lessc46_out_ag(0, s(T187))
lessc46_in_ag(s(T193)) → U83_ag(T193, lessc46_in_ag(T193))
U83_ag(T193, lessc46_out_ag(T194, T193)) → lessc46_out_ag(s(T194), s(T193))

The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(69) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(0) → P32_IN_GAAA(0)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)

R is empty.
The set Q consists of the following terms:

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(71) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

lessc34_in_ga(x0)
U82_ga(x0, x1)
lessc46_in_ag(x0)
U83_ag(x0, x1)

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DELETE1_IN_GAA(0) → DELETE1_IN_GAA(0)
DELETE1_IN_GAA(0) → P32_IN_GAAA(0)
P32_IN_GAAA(0) → U8_GAAA(0, lessc34_out_ga(0))
U8_GAAA(0, lessc34_out_ga(0)) → DELETE1_IN_GAA(0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(73) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = DELETE1_IN_GAA(0) evaluates to t =DELETE1_IN_GAA(0)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from DELETE1_IN_GAA(0) to DELETE1_IN_GAA(0).



(74) NO