0 Prolog
↳1 PrologToDTProblemTransformerProof (⇐)
↳2 TRIPLES
↳3 TriplesToPiDPProof (⇐)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 PiDP
↳7 PiDPToQDPProof (⇔)
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 YES
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U1_G(T25, T26, T27, bin_tree1_in_g(T26))
BIN_TREE1_IN_G(tree(T25, T26, T27)) → BIN_TREE1_IN_G(T26)
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U2_G(T25, T26, T27, bin_treec1_in_g(T26))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → U3_G(T25, T26, T27, bin_tree1_in_g(T27))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → BIN_TREE1_IN_G(T27)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T25, T26, T27)) → U5_g(T25, T26, T27, bin_treec1_in_g(T26))
U5_g(T25, T26, T27, bin_treec1_out_g(T26)) → U6_g(T25, T26, T27, bin_treec1_in_g(T27))
U6_g(T25, T26, T27, bin_treec1_out_g(T27)) → bin_treec1_out_g(tree(T25, T26, T27))
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U1_G(T25, T26, T27, bin_tree1_in_g(T26))
BIN_TREE1_IN_G(tree(T25, T26, T27)) → BIN_TREE1_IN_G(T26)
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U2_G(T25, T26, T27, bin_treec1_in_g(T26))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → U3_G(T25, T26, T27, bin_tree1_in_g(T27))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → BIN_TREE1_IN_G(T27)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T25, T26, T27)) → U5_g(T25, T26, T27, bin_treec1_in_g(T26))
U5_g(T25, T26, T27, bin_treec1_out_g(T26)) → U6_g(T25, T26, T27, bin_treec1_in_g(T27))
U6_g(T25, T26, T27, bin_treec1_out_g(T27)) → bin_treec1_out_g(tree(T25, T26, T27))
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U2_G(T25, T26, T27, bin_treec1_in_g(T26))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → BIN_TREE1_IN_G(T27)
BIN_TREE1_IN_G(tree(T25, T26, T27)) → BIN_TREE1_IN_G(T26)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T25, T26, T27)) → U5_g(T25, T26, T27, bin_treec1_in_g(T26))
U5_g(T25, T26, T27, bin_treec1_out_g(T26)) → U6_g(T25, T26, T27, bin_treec1_in_g(T27))
U6_g(T25, T26, T27, bin_treec1_out_g(T27)) → bin_treec1_out_g(tree(T25, T26, T27))
BIN_TREE1_IN_G(tree(T25, T26, T27)) → U2_G(T25, T26, T27, bin_treec1_in_g(T26))
U2_G(T25, T26, T27, bin_treec1_out_g(T26)) → BIN_TREE1_IN_G(T27)
BIN_TREE1_IN_G(tree(T25, T26, T27)) → BIN_TREE1_IN_G(T26)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T25, T26, T27)) → U5_g(T25, T26, T27, bin_treec1_in_g(T26))
U5_g(T25, T26, T27, bin_treec1_out_g(T26)) → U6_g(T25, T26, T27, bin_treec1_in_g(T27))
U6_g(T25, T26, T27, bin_treec1_out_g(T27)) → bin_treec1_out_g(tree(T25, T26, T27))
bin_treec1_in_g(x0)
U5_g(x0, x1, x2, x3)
U6_g(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: