0 Prolog
↳1 PrologToDTProblemTransformerProof (⇐)
↳2 TRIPLES
↳3 TriplesToPiDPProof (⇐)
↳4 PiDP
↳5 DependencyGraphProof (⇔)
↳6 PiDP
↳7 PiDPToQDPProof (⇔)
↳8 QDP
↳9 QDPSizeChangeProof (⇔)
↳10 YES
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U1_G(T19, T20, T21, bin_tree1_in_g(T20))
BIN_TREE1_IN_G(tree(T19, T20, T21)) → BIN_TREE1_IN_G(T20)
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U2_G(T19, T20, T21, bin_treec1_in_g(T20))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → U3_G(T19, T20, T21, bin_tree1_in_g(T21))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → BIN_TREE1_IN_G(T21)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T19, T20, T21)) → U5_g(T19, T20, T21, bin_treec1_in_g(T20))
U5_g(T19, T20, T21, bin_treec1_out_g(T20)) → U6_g(T19, T20, T21, bin_treec1_in_g(T21))
U6_g(T19, T20, T21, bin_treec1_out_g(T21)) → bin_treec1_out_g(tree(T19, T20, T21))
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U1_G(T19, T20, T21, bin_tree1_in_g(T20))
BIN_TREE1_IN_G(tree(T19, T20, T21)) → BIN_TREE1_IN_G(T20)
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U2_G(T19, T20, T21, bin_treec1_in_g(T20))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → U3_G(T19, T20, T21, bin_tree1_in_g(T21))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → BIN_TREE1_IN_G(T21)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T19, T20, T21)) → U5_g(T19, T20, T21, bin_treec1_in_g(T20))
U5_g(T19, T20, T21, bin_treec1_out_g(T20)) → U6_g(T19, T20, T21, bin_treec1_in_g(T21))
U6_g(T19, T20, T21, bin_treec1_out_g(T21)) → bin_treec1_out_g(tree(T19, T20, T21))
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U2_G(T19, T20, T21, bin_treec1_in_g(T20))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → BIN_TREE1_IN_G(T21)
BIN_TREE1_IN_G(tree(T19, T20, T21)) → BIN_TREE1_IN_G(T20)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T19, T20, T21)) → U5_g(T19, T20, T21, bin_treec1_in_g(T20))
U5_g(T19, T20, T21, bin_treec1_out_g(T20)) → U6_g(T19, T20, T21, bin_treec1_in_g(T21))
U6_g(T19, T20, T21, bin_treec1_out_g(T21)) → bin_treec1_out_g(tree(T19, T20, T21))
BIN_TREE1_IN_G(tree(T19, T20, T21)) → U2_G(T19, T20, T21, bin_treec1_in_g(T20))
U2_G(T19, T20, T21, bin_treec1_out_g(T20)) → BIN_TREE1_IN_G(T21)
BIN_TREE1_IN_G(tree(T19, T20, T21)) → BIN_TREE1_IN_G(T20)
bin_treec1_in_g(void) → bin_treec1_out_g(void)
bin_treec1_in_g(tree(T19, T20, T21)) → U5_g(T19, T20, T21, bin_treec1_in_g(T20))
U5_g(T19, T20, T21, bin_treec1_out_g(T20)) → U6_g(T19, T20, T21, bin_treec1_in_g(T21))
U6_g(T19, T20, T21, bin_treec1_out_g(T21)) → bin_treec1_out_g(tree(T19, T20, T21))
bin_treec1_in_g(x0)
U5_g(x0, x1, x2, x3)
U6_g(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: