0 Prolog
↳1 PrologToPrologProblemTransformerProof (⇐)
↳2 Prolog
↳3 PrologToPiTRSProof (⇐)
↳4 PiTRS
↳5 DependencyPairsProof (⇔)
↳6 PiDP
↳7 DependencyGraphProof (⇔)
↳8 PiDP
↳9 PiDPToQDPProof (⇔)
↳10 QDP
↳11 QDPSizeChangeProof (⇔)
↳12 TRUE
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → U2_G(T6, T7, T8, bin_tree1_in_g(T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → U2_G(T6, T7, T8, bin_tree1_in_g(T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))
bin_tree1_in_g(x0)
U1_g(x0, x1, x2, x3)
U2_g(x0, x1, x2, x3)
From the DPs we obtained the following set of size-change graphs: