(0) Obligation:

Clauses:

bin_tree(void) :- !.
bin_tree(T) :- ','(left(T, L), ','(right(T, R), ','(bin_tree(L), bin_tree(R)))).
left(void, void).
left(tree(X1, L, X2), L).
right(void, void).
right(tree(X3, X4, R), R).

Queries:

bin_tree(g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

bin_tree1(void).
bin_tree1(tree(T6, T7, T8)) :- bin_tree1(T7).
bin_tree1(tree(T6, T7, T8)) :- ','(bin_tree1(T7), bin_tree1(T8)).

Queries:

bin_tree1(g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
bin_tree1_in: (b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

Pi is empty.

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

Pi is empty.

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → U2_G(T6, T7, T8, bin_tree1_in_g(T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)

The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → U2_G(T6, T7, T8, bin_tree1_in_g(T8))
U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)

The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 1 less node.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)

The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)

The TRS R consists of the following rules:

bin_tree1_in_g(void) → bin_tree1_out_g(void)
bin_tree1_in_g(tree(T6, T7, T8)) → U1_g(T6, T7, T8, bin_tree1_in_g(T7))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → bin_tree1_out_g(tree(T6, T7, T8))
U1_g(T6, T7, T8, bin_tree1_out_g(T7)) → U2_g(T6, T7, T8, bin_tree1_in_g(T8))
U2_g(T6, T7, T8, bin_tree1_out_g(T8)) → bin_tree1_out_g(tree(T6, T7, T8))

The set Q consists of the following terms:

bin_tree1_in_g(x0)
U1_g(x0, x1, x2, x3)
U2_g(x0, x1, x2, x3)

We have to consider all (P,Q,R)-chains.

(11) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • BIN_TREE1_IN_G(tree(T6, T7, T8)) → U1_G(T6, T7, T8, bin_tree1_in_g(T7))
    The graph contains the following edges 1 > 1, 1 > 2, 1 > 3

  • BIN_TREE1_IN_G(tree(T6, T7, T8)) → BIN_TREE1_IN_G(T7)
    The graph contains the following edges 1 > 1

  • U1_G(T6, T7, T8, bin_tree1_out_g(T7)) → BIN_TREE1_IN_G(T8)
    The graph contains the following edges 3 >= 1

(12) TRUE