(0) Obligation:

Clauses:

times(X, Y, Z) :- mult(X, Y, 0, Z).
mult(0, Y, 0, Z) :- ','(!, eq(Z, 0)).
mult(s(X), Y, 0, Z) :- ','(!, mult(X, Y, Y, Z)).
mult(X, Y, W, s(Z)) :- ','(p(W, P), mult(X, Y, P, Z)).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

times(g,g,a).

(1) CutEliminatorProof (SOUND transformation)

Eliminated all cuts by simply ignoring them[PROLOG].

(2) Obligation:

Clauses:

times(X, Y, Z) :- mult(X, Y, 0, Z).
mult(0, Y, 0, Z) :- eq(Z, 0).
mult(s(X), Y, 0, Z) :- mult(X, Y, Y, Z).
mult(X, Y, W, s(Z)) :- ','(p(W, P), mult(X, Y, P, Z)).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

times(g,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
times_in: (b,b,f)
mult_in: (b,b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(0, Y, 0, Z) → U2_GGGA(Y, Z, eq_in_ag(Z, 0))
MULT_IN_GGGA(0, Y, 0, Z) → EQ_IN_AG(Z, 0)
MULT_IN_GGGA(s(X), Y, 0, Z) → U3_GGGA(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)
MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
MULT_IN_GGGA(X, Y, W, s(Z)) → P_IN_GA(W, P)
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → U5_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3)  =  U2_GGGA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x4)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x5)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(0, Y, 0, Z) → U2_GGGA(Y, Z, eq_in_ag(Z, 0))
MULT_IN_GGGA(0, Y, 0, Z) → EQ_IN_AG(Z, 0)
MULT_IN_GGGA(s(X), Y, 0, Z) → U3_GGGA(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)
MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
MULT_IN_GGGA(X, Y, W, s(Z)) → P_IN_GA(W, P)
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → U5_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3)  =  U2_GGGA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x4)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x5)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x3)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)

The TRS R consists of the following rules:

p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x5)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, p_in_ga(W))
U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(s(X), Y, 0) → MULT_IN_GGGA(X, Y, Y)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(13) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MULT_IN_GGGA(s(X), Y, 0) → MULT_IN_GGGA(X, Y, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MULT_IN_GGGA(x1, x2, x3)) = x1   
POL(U4_GGGA(x1, x2, x3)) = x1   
POL(p_in_ga(x1)) = 0   
POL(p_out_ga(x1)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, p_in_ga(W))
U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(15) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MULT_IN_GGGA(x1, x2, x3)) = x1 + x2 + x3   
POL(U4_GGGA(x1, x2, x3)) = x1 + x2 + x3   
POL(p_in_ga(x1)) = x1   
POL(p_out_ga(x1)) = 2·x1   
POL(s(x1)) = 2·x1   

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, p_in_ga(W))
U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(17) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, p_in_ga(W)) at position [2] we obtained the following new rules [LPAR04]:

MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(19) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))

R is empty.
The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(21) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

p_in_ga(x0)

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(23) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGGA(X, Y, p_out_ga(P)) → MULT_IN_GGGA(X, Y, P) we obtained the following new rules [LPAR04]:

U4_GGGA(z0, z1, p_out_ga(0)) → MULT_IN_GGGA(z0, z1, 0)

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))
U4_GGGA(z0, z1, p_out_ga(0)) → MULT_IN_GGGA(z0, z1, 0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(25) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U4_GGGA(z0, z1, p_out_ga(0)) evaluates to t =U4_GGGA(z0, z1, p_out_ga(0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U4_GGGA(z0, z1, p_out_ga(0))MULT_IN_GGGA(z0, z1, 0)
with rule U4_GGGA(z0', z1', p_out_ga(0)) → MULT_IN_GGGA(z0', z1', 0) at position [] and matcher [z0' / z0, z1' / z1]

MULT_IN_GGGA(z0, z1, 0)U4_GGGA(z0, z1, p_out_ga(0))
with rule MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, p_out_ga(0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(26) FALSE

(27) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
times_in: (b,b,f)
mult_in: (b,b,b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x1, x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x1, x2, x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x3, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(28) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x1, x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x1, x2, x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x3, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)

(29) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(0, Y, 0, Z) → U2_GGGA(Y, Z, eq_in_ag(Z, 0))
MULT_IN_GGGA(0, Y, 0, Z) → EQ_IN_AG(Z, 0)
MULT_IN_GGGA(s(X), Y, 0, Z) → U3_GGGA(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)
MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
MULT_IN_GGGA(X, Y, W, s(Z)) → P_IN_GA(W, P)
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → U5_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x1, x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x1, x2, x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x3, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3)  =  U2_GGGA(x1, x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x1, x2, x4)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

TIMES_IN_GGA(X, Y, Z) → U1_GGA(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
TIMES_IN_GGA(X, Y, Z) → MULT_IN_GGGA(X, Y, 0, Z)
MULT_IN_GGGA(0, Y, 0, Z) → U2_GGGA(Y, Z, eq_in_ag(Z, 0))
MULT_IN_GGGA(0, Y, 0, Z) → EQ_IN_AG(Z, 0)
MULT_IN_GGGA(s(X), Y, 0, Z) → U3_GGGA(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)
MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
MULT_IN_GGGA(X, Y, W, s(Z)) → P_IN_GA(W, P)
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → U5_GGGA(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x1, x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x1, x2, x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x3, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
TIMES_IN_GGA(x1, x2, x3)  =  TIMES_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3, x4)  =  U1_GGA(x1, x2, x4)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U2_GGGA(x1, x2, x3)  =  U2_GGGA(x1, x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U3_GGGA(x1, x2, x3, x4)  =  U3_GGGA(x1, x2, x4)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U5_GGGA(x1, x2, x3, x4, x5)  =  U5_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(31) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)

The TRS R consists of the following rules:

times_in_gga(X, Y, Z) → U1_gga(X, Y, Z, mult_in_ggga(X, Y, 0, Z))
mult_in_ggga(0, Y, 0, Z) → U2_ggga(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U2_ggga(Y, Z, eq_out_ag(Z, 0)) → mult_out_ggga(0, Y, 0, Z)
mult_in_ggga(s(X), Y, 0, Z) → U3_ggga(X, Y, Z, mult_in_ggga(X, Y, Y, Z))
mult_in_ggga(X, Y, W, s(Z)) → U4_ggga(X, Y, W, Z, p_in_ga(W, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U4_ggga(X, Y, W, Z, p_out_ga(W, P)) → U5_ggga(X, Y, W, Z, mult_in_ggga(X, Y, P, Z))
U5_ggga(X, Y, W, Z, mult_out_ggga(X, Y, P, Z)) → mult_out_ggga(X, Y, W, s(Z))
U3_ggga(X, Y, Z, mult_out_ggga(X, Y, Y, Z)) → mult_out_ggga(s(X), Y, 0, Z)
U1_gga(X, Y, Z, mult_out_ggga(X, Y, 0, Z)) → times_out_gga(X, Y, Z)

The argument filtering Pi contains the following mapping:
times_in_gga(x1, x2, x3)  =  times_in_gga(x1, x2)
U1_gga(x1, x2, x3, x4)  =  U1_gga(x1, x2, x4)
mult_in_ggga(x1, x2, x3, x4)  =  mult_in_ggga(x1, x2, x3)
0  =  0
U2_ggga(x1, x2, x3)  =  U2_ggga(x1, x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
mult_out_ggga(x1, x2, x3, x4)  =  mult_out_ggga(x1, x2, x3, x4)
s(x1)  =  s(x1)
U3_ggga(x1, x2, x3, x4)  =  U3_ggga(x1, x2, x4)
U4_ggga(x1, x2, x3, x4, x5)  =  U4_ggga(x1, x2, x3, x5)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
U5_ggga(x1, x2, x3, x4, x5)  =  U5_ggga(x1, x2, x3, x5)
times_out_gga(x1, x2, x3)  =  times_out_gga(x1, x2, x3)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(33) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W, s(Z)) → U4_GGGA(X, Y, W, Z, p_in_ga(W, P))
U4_GGGA(X, Y, W, Z, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P, Z)
MULT_IN_GGGA(s(X), Y, 0, Z) → MULT_IN_GGGA(X, Y, Y, Z)

The TRS R consists of the following rules:

p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
MULT_IN_GGGA(x1, x2, x3, x4)  =  MULT_IN_GGGA(x1, x2, x3)
U4_GGGA(x1, x2, x3, x4, x5)  =  U4_GGGA(x1, x2, x3, x5)

We have to consider all (P,R,Pi)-chains

(35) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, W, p_in_ga(W))
U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(s(X), Y, 0) → MULT_IN_GGGA(X, Y, Y)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(37) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


MULT_IN_GGGA(s(X), Y, 0) → MULT_IN_GGGA(X, Y, Y)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(MULT_IN_GGGA(x1, x2, x3)) = x1   
POL(U4_GGGA(x1, x2, x3, x4)) = x1   
POL(p_in_ga(x1)) = 0   
POL(p_out_ga(x1, x2)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented: none

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, W, p_in_ga(W))
U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P)

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(39) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule MULT_IN_GGGA(X, Y, W) → U4_GGGA(X, Y, W, p_in_ga(W)) at position [3] we obtained the following new rules [LPAR04]:

MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))

The TRS R consists of the following rules:

p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)

The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(41) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))

R is empty.
The set Q consists of the following terms:

p_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(43) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

p_in_ga(x0)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(45) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U4_GGGA(X, Y, W, p_out_ga(W, P)) → MULT_IN_GGGA(X, Y, P) we obtained the following new rules [LPAR04]:

U4_GGGA(z0, z1, 0, p_out_ga(0, 0)) → MULT_IN_GGGA(z0, z1, 0)
U4_GGGA(z0, z1, s(z2), p_out_ga(s(z2), z2)) → MULT_IN_GGGA(z0, z1, z2)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))
U4_GGGA(z0, z1, 0, p_out_ga(0, 0)) → MULT_IN_GGGA(z0, z1, 0)
U4_GGGA(z0, z1, s(z2), p_out_ga(s(z2), z2)) → MULT_IN_GGGA(z0, z1, z2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(47) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(48) Complex Obligation (AND)

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U4_GGGA(z0, z1, 0, p_out_ga(0, 0)) → MULT_IN_GGGA(z0, z1, 0)
MULT_IN_GGGA(y0, y1, 0) → U4_GGGA(y0, y1, 0, p_out_ga(0, 0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(50) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = MULT_IN_GGGA(y0, y1, 0) evaluates to t =MULT_IN_GGGA(y0, y1, 0)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

MULT_IN_GGGA(y0, y1, 0)U4_GGGA(y0, y1, 0, p_out_ga(0, 0))
with rule MULT_IN_GGGA(y0', y1', 0) → U4_GGGA(y0', y1', 0, p_out_ga(0, 0)) at position [] and matcher [y0' / y0, y1' / y1]

U4_GGGA(y0, y1, 0, p_out_ga(0, 0))MULT_IN_GGGA(y0, y1, 0)
with rule U4_GGGA(z0, z1, 0, p_out_ga(0, 0)) → MULT_IN_GGGA(z0, z1, 0)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(51) FALSE

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))
U4_GGGA(z0, z1, s(z2), p_out_ga(s(z2), z2)) → MULT_IN_GGGA(z0, z1, z2)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(53) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U4_GGGA(z0, z1, s(z2), p_out_ga(s(z2), z2)) → MULT_IN_GGGA(z0, z1, z2)
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 > 3, 4 > 3

  • MULT_IN_GGGA(y0, y1, s(x0)) → U4_GGGA(y0, y1, s(x0), p_out_ga(s(x0), x0))
    The graph contains the following edges 1 >= 1, 2 >= 2, 3 >= 3

(54) TRUE