(0) Obligation:
Clauses:
rev(L, R) :- rev(L, [], R).
rev([], Y, Z) :- ','(!, eq(Y, Z)).
rev(L, S, R) :- ','(head(L, X), ','(tail(L, T), rev(T, .(X, S), R))).
head([], X1).
head(.(X, X2), X).
tail([], []).
tail(.(X3, Xs), Xs).
eq(X, X).
Queries:
rev(g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
rev(L, R) :- rev(L, [], R).
rev([], Y, Z) :- eq(Y, Z).
rev(L, S, R) :- ','(head(L, X), ','(tail(L, T), rev(T, .(X, S), R))).
head([], X1).
head(.(X, X2), X).
tail([], []).
tail(.(X3, Xs), Xs).
eq(X, X).
Queries:
rev(g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
rev_in: (b,f)
rev_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GA(L, R) → U1_GA(L, R, rev_in_gga(L, [], R))
REV_IN_GA(L, R) → REV_IN_GGA(L, [], R)
REV_IN_GGA([], Y, Z) → U2_GGA(Y, Z, eq_in_ga(Y, Z))
REV_IN_GGA([], Y, Z) → EQ_IN_GA(Y, Z)
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
REV_IN_GGA(L, S, R) → HEAD_IN_GA(L, X)
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U3_GGA(L, S, R, head_out_ga(L, X)) → TAIL_IN_GA(L, T)
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → U5_GGA(L, S, R, rev_in_gga(T, .(X, S), R))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x2)
REV_IN_GA(
x1,
x2) =
REV_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GA(L, R) → U1_GA(L, R, rev_in_gga(L, [], R))
REV_IN_GA(L, R) → REV_IN_GGA(L, [], R)
REV_IN_GGA([], Y, Z) → U2_GGA(Y, Z, eq_in_ga(Y, Z))
REV_IN_GGA([], Y, Z) → EQ_IN_GA(Y, Z)
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
REV_IN_GGA(L, S, R) → HEAD_IN_GA(L, X)
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U3_GGA(L, S, R, head_out_ga(L, X)) → TAIL_IN_GA(L, T)
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → U5_GGA(L, S, R, rev_in_gga(T, .(X, S), R))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x2)
REV_IN_GA(
x1,
x2) =
REV_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x2)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x2,
x5)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
The argument filtering Pi contains the following mapping:
[] =
[]
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x2,
x5)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S) → U3_GGA(L, S, head_in_ga(L))
U3_GGA(L, S, head_out_ga) → U4_GGA(S, tail_in_ga(L))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga
head_in_ga(.(X2)) → head_out_ga
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(13) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
L,
S) →
U3_GGA(
L,
S,
head_in_ga(
L)) we obtained the following new rules [LPAR04]:
REV_IN_GGA(z1, .(z0)) → U3_GGA(z1, .(z0), head_in_ga(z1))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga) → U4_GGA(S, tail_in_ga(L))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA(z1, .(z0)) → U3_GGA(z1, .(z0), head_in_ga(z1))
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga
head_in_ga(.(X2)) → head_out_ga
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(15) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
REV_IN_GGA(
L,
S) →
U3_GGA(
L,
S,
head_in_ga(
L)) at position [2] we obtained the following new rules [LPAR04]:
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga) → U4_GGA(S, tail_in_ga(L))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga
head_in_ga(.(X2)) → head_out_ga
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga) → U4_GGA(S, tail_in_ga(L))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_ga(x0)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga) → U4_GGA(S, tail_in_ga(L))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(21) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U3_GGA(
L,
S,
head_out_ga) →
U4_GGA(
S,
tail_in_ga(
L)) at position [1] we obtained the following new rules [LPAR04]:
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U3_GGA(.(x0), y1, head_out_ga) → U4_GGA(y1, tail_out_ga(x0))
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U3_GGA(.(x0), y1, head_out_ga) → U4_GGA(y1, tail_out_ga(x0))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(23) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U3_GGA(.(x0), y1, head_out_ga) → U4_GGA(y1, tail_out_ga(x0))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(25) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U3_GGA(.(x0), y1, head_out_ga) → U4_GGA(y1, tail_out_ga(x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(27) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U3_GGA(.(x0), y1, head_out_ga) → U4_GGA(y1, tail_out_ga(x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U4_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(tail_out_ga(x1)) = | | + | | · | x1 |
POL(REV_IN_GGA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(U3_GGA(x1, x2, x3)) = | 0 | + | | · | x1 | + | | · | x2 | + | | · | x3 |
The following usable rules [FROCOS05] were oriented:
none
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(31) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
y1) →
U3_GGA(
[],
y1,
head_out_ga) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U4_GGA(S, tail_out_ga(T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(33) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GGA(
S,
tail_out_ga(
T)) →
REV_IN_GGA(
T,
.(
S)) we obtained the following new rules [LPAR04]:
U4_GGA(z0, tail_out_ga([])) → REV_IN_GGA([], .(z0))
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga)
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U4_GGA(z0, tail_out_ga([])) → REV_IN_GGA([], .(z0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(35) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
y1) →
U3_GGA(
[],
y1,
head_out_ga) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U4_GGA(z0, tail_out_ga([])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(37) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
y1) →
U3_GGA(
[],
y1,
head_out_ga) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga) → U4_GGA(y1, tail_out_ga([]))
U4_GGA(z0, tail_out_ga([])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GGA(
[],
y1,
head_out_ga) →
U4_GGA(
y1,
tail_out_ga(
[])) we obtained the following new rules [LPAR04]:
U3_GGA([], .(z0), head_out_ga) → U4_GGA(.(z0), tail_out_ga([]))
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(z0, tail_out_ga([])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
U3_GGA([], .(z0), head_out_ga) → U4_GGA(.(z0), tail_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GGA(
z0,
tail_out_ga(
[])) →
REV_IN_GGA(
[],
.(
z0)) we obtained the following new rules [LPAR04]:
U4_GGA(.(z0), tail_out_ga([])) → REV_IN_GGA([], .(.(z0)))
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga)
U3_GGA([], .(z0), head_out_ga) → U4_GGA(.(z0), tail_out_ga([]))
U4_GGA(.(z0), tail_out_ga([])) → REV_IN_GGA([], .(.(z0)))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
.(
z0)) →
U3_GGA(
[],
.(
z0),
head_out_ga) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga)
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], .(z0), head_out_ga) → U4_GGA(.(z0), tail_out_ga([]))
U4_GGA(.(z0), tail_out_ga([])) → REV_IN_GGA([], .(.(z0)))
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(45) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GGA(
[],
.(
z0),
head_out_ga) →
U4_GGA(
.(
z0),
tail_out_ga(
[])) we obtained the following new rules [LPAR04]:
U3_GGA([], .(.(z0)), head_out_ga) → U4_GGA(.(.(z0)), tail_out_ga([]))
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(.(z0), tail_out_ga([])) → REV_IN_GGA([], .(.(z0)))
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga)
U3_GGA([], .(.(z0)), head_out_ga) → U4_GGA(.(.(z0)), tail_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(47) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
REV_IN_GGA(
[],
.(
.(
z0))) evaluates to t =
REV_IN_GGA(
[],
.(
.(
.(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [z0 / .(z0)]
- Semiunifier: [ ]
Rewriting sequenceREV_IN_GGA([], .(.(z0))) →
U3_GGA(
[],
.(
.(
z0)),
head_out_ga)
with rule
REV_IN_GGA(
[],
.(
.(
z0'))) →
U3_GGA(
[],
.(
.(
z0')),
head_out_ga) at position [] and matcher [
z0' /
z0]
U3_GGA([], .(.(z0)), head_out_ga) →
U4_GGA(
.(
.(
z0)),
tail_out_ga(
[]))
with rule
U3_GGA(
[],
.(
.(
z0')),
head_out_ga) →
U4_GGA(
.(
.(
z0')),
tail_out_ga(
[])) at position [] and matcher [
z0' /
z0]
U4_GGA(.(.(z0)), tail_out_ga([])) →
REV_IN_GGA(
[],
.(
.(
.(
z0))))
with rule
U4_GGA(
.(
z0),
tail_out_ga(
[])) →
REV_IN_GGA(
[],
.(
.(
z0)))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(48) FALSE
(49) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
rev_in: (b,f)
rev_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(50) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x1,
x2)
(51) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GA(L, R) → U1_GA(L, R, rev_in_gga(L, [], R))
REV_IN_GA(L, R) → REV_IN_GGA(L, [], R)
REV_IN_GGA([], Y, Z) → U2_GGA(Y, Z, eq_in_ga(Y, Z))
REV_IN_GGA([], Y, Z) → EQ_IN_GA(Y, Z)
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
REV_IN_GGA(L, S, R) → HEAD_IN_GA(L, X)
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U3_GGA(L, S, R, head_out_ga(L, X)) → TAIL_IN_GA(L, T)
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → U5_GGA(L, S, R, rev_in_gga(T, .(X, S), R))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x1,
x2)
REV_IN_GA(
x1,
x2) =
REV_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(52) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GA(L, R) → U1_GA(L, R, rev_in_gga(L, [], R))
REV_IN_GA(L, R) → REV_IN_GGA(L, [], R)
REV_IN_GGA([], Y, Z) → U2_GGA(Y, Z, eq_in_ga(Y, Z))
REV_IN_GGA([], Y, Z) → EQ_IN_GA(Y, Z)
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
REV_IN_GGA(L, S, R) → HEAD_IN_GA(L, X)
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U3_GGA(L, S, R, head_out_ga(L, X)) → TAIL_IN_GA(L, T)
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → U5_GGA(L, S, R, rev_in_gga(T, .(X, S), R))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x1,
x2)
REV_IN_GA(
x1,
x2) =
REV_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x1,
x3)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3) =
U2_GGA(
x1,
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(53) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(54) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
rev_in_ga(L, R) → U1_ga(L, R, rev_in_gga(L, [], R))
rev_in_gga([], Y, Z) → U2_gga(Y, Z, eq_in_ga(Y, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U2_gga(Y, Z, eq_out_ga(Y, Z)) → rev_out_gga([], Y, Z)
rev_in_gga(L, S, R) → U3_gga(L, S, R, head_in_ga(L, X))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
U3_gga(L, S, R, head_out_ga(L, X)) → U4_gga(L, S, R, X, tail_in_ga(L, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
U4_gga(L, S, R, X, tail_out_ga(L, T)) → U5_gga(L, S, R, rev_in_gga(T, .(X, S), R))
U5_gga(L, S, R, rev_out_gga(T, .(X, S), R)) → rev_out_gga(L, S, R)
U1_ga(L, R, rev_out_gga(L, [], R)) → rev_out_ga(L, R)
The argument filtering Pi contains the following mapping:
rev_in_ga(
x1,
x2) =
rev_in_ga(
x1)
U1_ga(
x1,
x2,
x3) =
U1_ga(
x1,
x3)
rev_in_gga(
x1,
x2,
x3) =
rev_in_gga(
x1,
x2)
[] =
[]
U2_gga(
x1,
x2,
x3) =
U2_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
rev_out_gga(
x1,
x2,
x3) =
rev_out_gga(
x1,
x2,
x3)
U3_gga(
x1,
x2,
x3,
x4) =
U3_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5) =
U4_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
rev_out_ga(
x1,
x2) =
rev_out_ga(
x1,
x2)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x5)
We have to consider all (P,R,Pi)-chains
(55) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(56) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S, R) → U3_GGA(L, S, R, head_in_ga(L, X))
U3_GGA(L, S, R, head_out_ga(L, X)) → U4_GGA(L, S, R, X, tail_in_ga(L, T))
U4_GGA(L, S, R, X, tail_out_ga(L, T)) → REV_IN_GGA(T, .(X, S), R)
The TRS R consists of the following rules:
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(X, X2), X) → head_out_ga(.(X, X2), X)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, Xs), Xs) → tail_out_ga(.(X3, Xs), Xs)
The argument filtering Pi contains the following mapping:
[] =
[]
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
REV_IN_GGA(
x1,
x2,
x3) =
REV_IN_GGA(
x1,
x2)
U3_GGA(
x1,
x2,
x3,
x4) =
U3_GGA(
x1,
x2,
x4)
U4_GGA(
x1,
x2,
x3,
x4,
x5) =
U4_GGA(
x1,
x2,
x5)
We have to consider all (P,R,Pi)-chains
(57) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(L, S) → U3_GGA(L, S, head_in_ga(L))
U3_GGA(L, S, head_out_ga(L)) → U4_GGA(L, S, tail_in_ga(L))
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga([])
head_in_ga(.(X2)) → head_out_ga(.(X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(59) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
L,
S) →
U3_GGA(
L,
S,
head_in_ga(
L)) we obtained the following new rules [LPAR04]:
REV_IN_GGA(z2, .(z1)) → U3_GGA(z2, .(z1), head_in_ga(z2))
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga(L)) → U4_GGA(L, S, tail_in_ga(L))
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA(z2, .(z1)) → U3_GGA(z2, .(z1), head_in_ga(z2))
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga([])
head_in_ga(.(X2)) → head_out_ga(.(X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(61) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
REV_IN_GGA(
L,
S) →
U3_GGA(
L,
S,
head_in_ga(
L)) at position [2] we obtained the following new rules [LPAR04]:
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga(L)) → U4_GGA(L, S, tail_in_ga(L))
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga([])
head_in_ga(.(X2)) → head_out_ga(.(X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(63) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga(L)) → U4_GGA(L, S, tail_in_ga(L))
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(65) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_ga(x0)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA(L, S, head_out_ga(L)) → U4_GGA(L, S, tail_in_ga(L))
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(67) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U3_GGA(
L,
S,
head_out_ga(
L)) →
U4_GGA(
L,
S,
tail_in_ga(
L)) at position [2] we obtained the following new rules [LPAR04]:
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(69) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(71) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA(L, S, tail_out_ga(L, T)) → REV_IN_GGA(T, .(S))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(73) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GGA(
L,
S,
tail_out_ga(
L,
T)) →
REV_IN_GGA(
T,
.(
S)) we obtained the following new rules [LPAR04]:
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
U4_GGA(.(z0), z1, tail_out_ga(.(z0), z0)) → REV_IN_GGA(z0, .(z1))
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
U4_GGA(.(z0), z1, tail_out_ga(.(z0), z0)) → REV_IN_GGA(z0, .(z1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(75) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(76) Complex Obligation (AND)
(77) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], y1) → U3_GGA([], y1, head_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(78) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
y1) →
U3_GGA(
[],
y1,
head_out_ga(
[])) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
(79) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(80) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
y1) →
U3_GGA(
[],
y1,
head_out_ga(
[])) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
(81) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], y1, head_out_ga([])) → U4_GGA([], y1, tail_out_ga([], []))
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(82) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GGA(
[],
y1,
head_out_ga(
[])) →
U4_GGA(
[],
y1,
tail_out_ga(
[],
[])) we obtained the following new rules [LPAR04]:
U3_GGA([], .(z0), head_out_ga([])) → U4_GGA([], .(z0), tail_out_ga([], []))
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA([], z0, tail_out_ga([], [])) → REV_IN_GGA([], .(z0))
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
U3_GGA([], .(z0), head_out_ga([])) → U4_GGA([], .(z0), tail_out_ga([], []))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(84) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GGA(
[],
z0,
tail_out_ga(
[],
[])) →
REV_IN_GGA(
[],
.(
z0)) we obtained the following new rules [LPAR04]:
U4_GGA([], .(z0), tail_out_ga([], [])) → REV_IN_GGA([], .(.(z0)))
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA([], .(z0)) → U3_GGA([], .(z0), head_out_ga([]))
U3_GGA([], .(z0), head_out_ga([])) → U4_GGA([], .(z0), tail_out_ga([], []))
U4_GGA([], .(z0), tail_out_ga([], [])) → REV_IN_GGA([], .(.(z0)))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(86) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
REV_IN_GGA(
[],
.(
z0)) →
U3_GGA(
[],
.(
z0),
head_out_ga(
[])) we obtained the following new rules [LPAR04]:
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga([]))
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GGA([], .(z0), head_out_ga([])) → U4_GGA([], .(z0), tail_out_ga([], []))
U4_GGA([], .(z0), tail_out_ga([], [])) → REV_IN_GGA([], .(.(z0)))
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(88) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GGA(
[],
.(
z0),
head_out_ga(
[])) →
U4_GGA(
[],
.(
z0),
tail_out_ga(
[],
[])) we obtained the following new rules [LPAR04]:
U3_GGA([], .(.(z0)), head_out_ga([])) → U4_GGA([], .(.(z0)), tail_out_ga([], []))
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GGA([], .(z0), tail_out_ga([], [])) → REV_IN_GGA([], .(.(z0)))
REV_IN_GGA([], .(.(z0))) → U3_GGA([], .(.(z0)), head_out_ga([]))
U3_GGA([], .(.(z0)), head_out_ga([])) → U4_GGA([], .(.(z0)), tail_out_ga([], []))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(90) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
REV_IN_GGA(
[],
.(
.(
z0))) evaluates to t =
REV_IN_GGA(
[],
.(
.(
.(
z0))))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [z0 / .(z0)]
Rewriting sequenceREV_IN_GGA([], .(.(z0))) →
U3_GGA(
[],
.(
.(
z0)),
head_out_ga(
[]))
with rule
REV_IN_GGA(
[],
.(
.(
z0'))) →
U3_GGA(
[],
.(
.(
z0')),
head_out_ga(
[])) at position [] and matcher [
z0' /
z0]
U3_GGA([], .(.(z0)), head_out_ga([])) →
U4_GGA(
[],
.(
.(
z0)),
tail_out_ga(
[],
[]))
with rule
U3_GGA(
[],
.(
.(
z0')),
head_out_ga(
[])) →
U4_GGA(
[],
.(
.(
z0')),
tail_out_ga(
[],
[])) at position [] and matcher [
z0' /
z0]
U4_GGA([], .(.(z0)), tail_out_ga([], [])) →
REV_IN_GGA(
[],
.(
.(
.(
z0))))
with rule
U4_GGA(
[],
.(
z0),
tail_out_ga(
[],
[])) →
REV_IN_GGA(
[],
.(
.(
z0)))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(91) FALSE
(92) Obligation:
Q DP problem:
The TRS P consists of the following rules:
REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
U4_GGA(.(z0), z1, tail_out_ga(.(z0), z0)) → REV_IN_GGA(z0, .(z1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(93) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U3_GGA(.(x0), y1, head_out_ga(.(x0))) → U4_GGA(.(x0), y1, tail_out_ga(.(x0), x0))
The graph contains the following edges 1 >= 1, 3 > 1, 2 >= 2
- U4_GGA(.(z0), z1, tail_out_ga(.(z0), z0)) → REV_IN_GGA(z0, .(z1))
The graph contains the following edges 1 > 1, 3 > 1
- REV_IN_GGA(.(x0), y1) → U3_GGA(.(x0), y1, head_out_ga(.(x0)))
The graph contains the following edges 1 >= 1, 2 >= 2
(94) TRUE