(0) Obligation:
Clauses:
f(X) :- ','(p(X), q(X)).
p(a).
p(X) :- ','(p(a), !).
q(b).
Queries:
f(a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
f(X) :- ','(p(X), q(X)).
p(a).
p(X) :- p(a).
q(b).
Queries:
f(a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (f)
p_in: (f) (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g
U3_g(
x1,
x2) =
U3_g(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g
U3_g(
x1,
x2) =
U3_g(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_A(X) → U1_A(X, p_in_a(X))
F_IN_A(X) → P_IN_A(X)
P_IN_A(X) → U3_A(X, p_in_g(a))
P_IN_A(X) → P_IN_G(a)
P_IN_G(X) → U3_G(X, p_in_g(a))
P_IN_G(X) → P_IN_G(a)
U1_A(X, p_out_a(X)) → U2_A(X, q_in_a(X))
U1_A(X, p_out_a(X)) → Q_IN_A(X)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g
U3_g(
x1,
x2) =
U3_g(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
F_IN_A(
x1) =
F_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
P_IN_A(
x1) =
P_IN_A
U3_A(
x1,
x2) =
U3_A(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
Q_IN_A(
x1) =
Q_IN_A
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_A(X) → U1_A(X, p_in_a(X))
F_IN_A(X) → P_IN_A(X)
P_IN_A(X) → U3_A(X, p_in_g(a))
P_IN_A(X) → P_IN_G(a)
P_IN_G(X) → U3_G(X, p_in_g(a))
P_IN_G(X) → P_IN_G(a)
U1_A(X, p_out_a(X)) → U2_A(X, q_in_a(X))
U1_A(X, p_out_a(X)) → Q_IN_A(X)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g
U3_g(
x1,
x2) =
U3_g(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
F_IN_A(
x1) =
F_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
P_IN_A(
x1) =
P_IN_A
U3_A(
x1,
x2) =
U3_A(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
Q_IN_A(
x1) =
Q_IN_A
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g
U3_g(
x1,
x2) =
U3_g(
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
P_IN_G(
X) →
P_IN_G(
a) we obtained the following new rules [LPAR04]:
P_IN_G(a) → P_IN_G(a)
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(15) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
P_IN_G(
X) →
P_IN_G(
a) we obtained the following new rules [LPAR04]:
P_IN_G(a) → P_IN_G(a)
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(17) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P_IN_G(
a) evaluates to t =
P_IN_G(
a)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P_IN_G(a) to P_IN_G(a).
(18) FALSE
(19) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (f)
p_in: (f) (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(20) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
(21) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_A(X) → U1_A(X, p_in_a(X))
F_IN_A(X) → P_IN_A(X)
P_IN_A(X) → U3_A(X, p_in_g(a))
P_IN_A(X) → P_IN_G(a)
P_IN_G(X) → U3_G(X, p_in_g(a))
P_IN_G(X) → P_IN_G(a)
U1_A(X, p_out_a(X)) → U2_A(X, q_in_a(X))
U1_A(X, p_out_a(X)) → Q_IN_A(X)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
F_IN_A(
x1) =
F_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
P_IN_A(
x1) =
P_IN_A
U3_A(
x1,
x2) =
U3_A(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
Q_IN_A(
x1) =
Q_IN_A
We have to consider all (P,R,Pi)-chains
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_A(X) → U1_A(X, p_in_a(X))
F_IN_A(X) → P_IN_A(X)
P_IN_A(X) → U3_A(X, p_in_g(a))
P_IN_A(X) → P_IN_G(a)
P_IN_G(X) → U3_G(X, p_in_g(a))
P_IN_G(X) → P_IN_G(a)
U1_A(X, p_out_a(X)) → U2_A(X, q_in_a(X))
U1_A(X, p_out_a(X)) → Q_IN_A(X)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
F_IN_A(
x1) =
F_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
P_IN_A(
x1) =
P_IN_A
U3_A(
x1,
x2) =
U3_A(
x2)
P_IN_G(
x1) =
P_IN_G(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U2_A(
x1,
x2) =
U2_A(
x2)
Q_IN_A(
x1) =
Q_IN_A
We have to consider all (P,R,Pi)-chains
(23) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
The TRS R consists of the following rules:
f_in_a(X) → U1_a(X, p_in_a(X))
p_in_a(a) → p_out_a(a)
p_in_a(X) → U3_a(X, p_in_g(a))
p_in_g(a) → p_out_g(a)
p_in_g(X) → U3_g(X, p_in_g(a))
U3_g(X, p_out_g(a)) → p_out_g(X)
U3_a(X, p_out_g(a)) → p_out_a(X)
U1_a(X, p_out_a(X)) → U2_a(X, q_in_a(X))
q_in_a(b) → q_out_a(b)
U2_a(X, q_out_a(X)) → f_out_a(X)
The argument filtering Pi contains the following mapping:
f_in_a(
x1) =
f_in_a
U1_a(
x1,
x2) =
U1_a(
x2)
p_in_a(
x1) =
p_in_a
p_out_a(
x1) =
p_out_a
U3_a(
x1,
x2) =
U3_a(
x2)
p_in_g(
x1) =
p_in_g(
x1)
a =
a
p_out_g(
x1) =
p_out_g(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
U2_a(
x1,
x2) =
U2_a(
x2)
q_in_a(
x1) =
q_in_a
q_out_a(
x1) =
q_out_a(
x1)
f_out_a(
x1) =
f_out_a(
x1)
P_IN_G(
x1) =
P_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(25) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(27) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(X) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(29) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
P_IN_G(
X) →
P_IN_G(
a) we obtained the following new rules [LPAR04]:
P_IN_G(a) → P_IN_G(a)
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(31) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
P_IN_G(
X) →
P_IN_G(
a) we obtained the following new rules [LPAR04]:
P_IN_G(a) → P_IN_G(a)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P_IN_G(a) → P_IN_G(a)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(33) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P_IN_G(
a) evaluates to t =
P_IN_G(
a)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P_IN_G(a) to P_IN_G(a).
(34) FALSE