(0) Obligation:
Clauses:
overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X1, []) :- ','(!, failure(a)).
member(X, Y) :- head(Y, X).
member(X, Y) :- ','(tail(Y, T), member(X, T)).
head([], X2).
head(.(H, X3), H).
tail([], []).
tail(.(X4, T), T).
failure(b).
Queries:
overlap(g,g).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
overlap(Xs, Ys) :- ','(member(X, Xs), member(X, Ys)).
member(X1, []) :- failure(a).
member(X, Y) :- head(Y, X).
member(X, Y) :- ','(tail(Y, T), member(X, T)).
head([], X2).
head(.(H, X3), H).
tail([], []).
tail(.(X4, T), T).
failure(b).
Queries:
overlap(g,g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
overlap_in: (b,b)
member_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
member_out_ag(
x1,
x2) =
member_out_ag
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
member_out_ag(
x1,
x2) =
member_out_ag
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAP_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, member_in_ag(X, Xs))
OVERLAP_IN_GG(Xs, Ys) → MEMBER_IN_AG(X, Xs)
MEMBER_IN_AG(X1, []) → U3_AG(X1, failure_in_g(a))
MEMBER_IN_AG(X1, []) → FAILURE_IN_G(a)
MEMBER_IN_AG(X, Y) → U4_AG(X, Y, head_in_ga(Y, X))
MEMBER_IN_AG(X, Y) → HEAD_IN_GA(Y, X)
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
MEMBER_IN_AG(X, Y) → TAIL_IN_GA(Y, T)
U5_AG(X, Y, tail_out_ga(Y, T)) → U6_AG(X, Y, member_in_ag(X, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → U2_GG(Xs, Ys, member_in_ag(X, Ys))
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → MEMBER_IN_AG(X, Ys)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
member_out_ag(
x1,
x2) =
member_out_ag
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg
OVERLAP_IN_GG(
x1,
x2) =
OVERLAP_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x2,
x3)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U3_AG(
x1,
x2) =
U3_AG(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x3)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAP_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, member_in_ag(X, Xs))
OVERLAP_IN_GG(Xs, Ys) → MEMBER_IN_AG(X, Xs)
MEMBER_IN_AG(X1, []) → U3_AG(X1, failure_in_g(a))
MEMBER_IN_AG(X1, []) → FAILURE_IN_G(a)
MEMBER_IN_AG(X, Y) → U4_AG(X, Y, head_in_ga(Y, X))
MEMBER_IN_AG(X, Y) → HEAD_IN_GA(Y, X)
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
MEMBER_IN_AG(X, Y) → TAIL_IN_GA(Y, T)
U5_AG(X, Y, tail_out_ga(Y, T)) → U6_AG(X, Y, member_in_ag(X, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → U2_GG(Xs, Ys, member_in_ag(X, Ys))
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → MEMBER_IN_AG(X, Ys)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
member_out_ag(
x1,
x2) =
member_out_ag
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg
OVERLAP_IN_GG(
x1,
x2) =
OVERLAP_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x2,
x3)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U3_AG(
x1,
x2) =
U3_AG(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x3)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 10 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
member_out_ag(
x1,
x2) =
member_out_ag
U4_ag(
x1,
x2,
x3) =
U4_ag(
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x3)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
The TRS R consists of the following rules:
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x3)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(Y) → U5_AG(tail_in_ga(Y))
U5_AG(tail_out_ga(T)) → MEMBER_IN_AG(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(X4, T)) → tail_out_ga(T)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
tail_in_ga(.(X4, T)) → tail_out_ga(T)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(.(x1, x2)) = x1 + 2·x2
POL(MEMBER_IN_AG(x1)) = x1
POL(U5_AG(x1)) = x1
POL([]) = 0
POL(tail_in_ga(x1)) = x1
POL(tail_out_ga(x1)) = 2·x1
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(Y) → U5_AG(tail_in_ga(Y))
U5_AG(tail_out_ga(T)) → MEMBER_IN_AG(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(15) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
MEMBER_IN_AG(
Y) →
U5_AG(
tail_in_ga(
Y)) at position [0] we obtained the following new rules [LPAR04]:
MEMBER_IN_AG([]) → U5_AG(tail_out_ga([]))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(tail_out_ga(T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG(tail_out_ga([]))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(tail_out_ga(T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG(tail_out_ga([]))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(tail_out_ga(T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG(tail_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U5_AG(
tail_out_ga(
T)) →
MEMBER_IN_AG(
T) we obtained the following new rules [LPAR04]:
U5_AG(tail_out_ga([])) → MEMBER_IN_AG([])
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG([]) → U5_AG(tail_out_ga([]))
U5_AG(tail_out_ga([])) → MEMBER_IN_AG([])
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U5_AG(
tail_out_ga(
[])) evaluates to t =
U5_AG(
tail_out_ga(
[]))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU5_AG(tail_out_ga([])) →
MEMBER_IN_AG(
[])
with rule
U5_AG(
tail_out_ga(
[])) →
MEMBER_IN_AG(
[]) at position [] and matcher [ ]
MEMBER_IN_AG([]) →
U5_AG(
tail_out_ga(
[]))
with rule
MEMBER_IN_AG(
[]) →
U5_AG(
tail_out_ga(
[]))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(24) FALSE
(25) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
overlap_in: (b,b)
member_in: (f,b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
member_out_ag(
x1,
x2) =
member_out_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x2,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x2,
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x2,
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(26) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
member_out_ag(
x1,
x2) =
member_out_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x2,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x2,
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x2,
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg(
x1,
x2)
(27) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAP_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, member_in_ag(X, Xs))
OVERLAP_IN_GG(Xs, Ys) → MEMBER_IN_AG(X, Xs)
MEMBER_IN_AG(X1, []) → U3_AG(X1, failure_in_g(a))
MEMBER_IN_AG(X1, []) → FAILURE_IN_G(a)
MEMBER_IN_AG(X, Y) → U4_AG(X, Y, head_in_ga(Y, X))
MEMBER_IN_AG(X, Y) → HEAD_IN_GA(Y, X)
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
MEMBER_IN_AG(X, Y) → TAIL_IN_GA(Y, T)
U5_AG(X, Y, tail_out_ga(Y, T)) → U6_AG(X, Y, member_in_ag(X, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → U2_GG(Xs, Ys, member_in_ag(X, Ys))
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → MEMBER_IN_AG(X, Ys)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
member_out_ag(
x1,
x2) =
member_out_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x2,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x2,
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x2,
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg(
x1,
x2)
OVERLAP_IN_GG(
x1,
x2) =
OVERLAP_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U3_AG(
x1,
x2) =
U3_AG(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x2,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x2,
x3)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x2,
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
OVERLAP_IN_GG(Xs, Ys) → U1_GG(Xs, Ys, member_in_ag(X, Xs))
OVERLAP_IN_GG(Xs, Ys) → MEMBER_IN_AG(X, Xs)
MEMBER_IN_AG(X1, []) → U3_AG(X1, failure_in_g(a))
MEMBER_IN_AG(X1, []) → FAILURE_IN_G(a)
MEMBER_IN_AG(X, Y) → U4_AG(X, Y, head_in_ga(Y, X))
MEMBER_IN_AG(X, Y) → HEAD_IN_GA(Y, X)
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
MEMBER_IN_AG(X, Y) → TAIL_IN_GA(Y, T)
U5_AG(X, Y, tail_out_ga(Y, T)) → U6_AG(X, Y, member_in_ag(X, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → U2_GG(Xs, Ys, member_in_ag(X, Ys))
U1_GG(Xs, Ys, member_out_ag(X, Xs)) → MEMBER_IN_AG(X, Ys)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
member_out_ag(
x1,
x2) =
member_out_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x2,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x2,
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x2,
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg(
x1,
x2)
OVERLAP_IN_GG(
x1,
x2) =
OVERLAP_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x2,
x3)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U3_AG(
x1,
x2) =
U3_AG(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U4_AG(
x1,
x2,
x3) =
U4_AG(
x2,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x2,
x3)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U6_AG(
x1,
x2,
x3) =
U6_AG(
x2,
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x1,
x2,
x3)
We have to consider all (P,R,Pi)-chains
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 10 less nodes.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
The TRS R consists of the following rules:
overlap_in_gg(Xs, Ys) → U1_gg(Xs, Ys, member_in_ag(X, Xs))
member_in_ag(X1, []) → U3_ag(X1, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U3_ag(X1, failure_out_g(a)) → member_out_ag(X1, [])
member_in_ag(X, Y) → U4_ag(X, Y, head_in_ga(Y, X))
head_in_ga([], X2) → head_out_ga([], X2)
head_in_ga(.(H, X3), H) → head_out_ga(.(H, X3), H)
U4_ag(X, Y, head_out_ga(Y, X)) → member_out_ag(X, Y)
member_in_ag(X, Y) → U5_ag(X, Y, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
U5_ag(X, Y, tail_out_ga(Y, T)) → U6_ag(X, Y, member_in_ag(X, T))
U6_ag(X, Y, member_out_ag(X, T)) → member_out_ag(X, Y)
U1_gg(Xs, Ys, member_out_ag(X, Xs)) → U2_gg(Xs, Ys, member_in_ag(X, Ys))
U2_gg(Xs, Ys, member_out_ag(X, Ys)) → overlap_out_gg(Xs, Ys)
The argument filtering Pi contains the following mapping:
overlap_in_gg(
x1,
x2) =
overlap_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x2,
x3)
member_in_ag(
x1,
x2) =
member_in_ag(
x2)
[] =
[]
U3_ag(
x1,
x2) =
U3_ag(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
member_out_ag(
x1,
x2) =
member_out_ag(
x2)
U4_ag(
x1,
x2,
x3) =
U4_ag(
x2,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U5_ag(
x1,
x2,
x3) =
U5_ag(
x2,
x3)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U6_ag(
x1,
x2,
x3) =
U6_ag(
x2,
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x1,
x2,
x3)
overlap_out_gg(
x1,
x2) =
overlap_out_gg(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(31) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(X, Y) → U5_AG(X, Y, tail_in_ga(Y, T))
U5_AG(X, Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(X, T)
The TRS R consists of the following rules:
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X4, T), T) → tail_out_ga(.(X4, T), T)
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
MEMBER_IN_AG(
x1,
x2) =
MEMBER_IN_AG(
x2)
U5_AG(
x1,
x2,
x3) =
U5_AG(
x2,
x3)
We have to consider all (P,R,Pi)-chains
(33) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG(Y) → U5_AG(Y, tail_in_ga(Y))
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(X4, T)) → tail_out_ga(.(X4, T), T)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(35) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
MEMBER_IN_AG(
Y) →
U5_AG(
Y,
tail_in_ga(
Y)) at position [1] we obtained the following new rules [LPAR04]:
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(X4, T)) → tail_out_ga(.(X4, T), T)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(37) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(39) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U5_AG(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(tail_out_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(MEMBER_IN_AG(x1)) = | 0 | + | | · | x1 |
POL(.(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
none
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U5_AG(
Y,
tail_out_ga(
Y,
T)) →
MEMBER_IN_AG(
T) we obtained the following new rules [LPAR04]:
U5_AG([], tail_out_ga([], [])) → MEMBER_IN_AG([])
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
U5_AG([], tail_out_ga([], [])) → MEMBER_IN_AG([])
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(45) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U5_AG(
Y,
tail_out_ga(
Y,
T)) →
MEMBER_IN_AG(
T) we obtained the following new rules [LPAR04]:
U5_AG([], tail_out_ga([], [])) → MEMBER_IN_AG([])
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
U5_AG([], tail_out_ga([], [])) → MEMBER_IN_AG([])
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(47) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U5_AG(
[],
tail_out_ga(
[],
[])) evaluates to t =
U5_AG(
[],
tail_out_ga(
[],
[]))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU5_AG([], tail_out_ga([], [])) →
MEMBER_IN_AG(
[])
with rule
U5_AG(
[],
tail_out_ga(
[],
[])) →
MEMBER_IN_AG(
[]) at position [] and matcher [ ]
MEMBER_IN_AG([]) →
U5_AG(
[],
tail_out_ga(
[],
[]))
with rule
MEMBER_IN_AG(
[]) →
U5_AG(
[],
tail_out_ga(
[],
[]))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(48) FALSE
(49) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
MEMBER_IN_AG(.(x0, x1)) → U5_AG(.(x0, x1), tail_out_ga(.(x0, x1), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x2
POL(MEMBER_IN_AG(x1)) = x1
POL(U5_AG(x1, x2)) = x2
POL([]) = 0
POL(tail_out_ga(x1, x2)) = x2
The following usable rules [FROCOS05] were oriented:
none
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U5_AG(Y, tail_out_ga(Y, T)) → MEMBER_IN_AG(T)
MEMBER_IN_AG([]) → U5_AG([], tail_out_ga([], []))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.