(0) Obligation:

Clauses:

ordered([]) :- !.
ordered(.(X1, [])) :- !.
ordered(Xs) :- ','(head(Xs, X), ','(tail(Xs, Ys), ','(head(Ys, Y), ','(tail(Ys, Zs), ','(less(X, s(Y)), ordered(.(Y, Zs))))))).
head([], X2).
head(.(X, X3), X).
tail([], []).
tail(.(X4, Xs), Xs).
less(0, s(X5)) :- !.
less(X, Y) :- ','(p(X, Px), ','(p(Y, Py), less(Px, Py))).
p(0, 0).
p(s(X), X).

Queries:

ordered(g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

less55 :- less55.
less76(0) :- less55.
less76(s(T70)) :- less76(T70).
less40(0, 0) :- less55.
less40(s(T63), 0) :- less76(T63).
less40(s(T63), s(T76)) :- less40(T63, T76).
ordered1(.(s(T45), .(T49, T31))) :- less40(T45, T49).
ordered1(.(T16, .(T30, T31))) :- ','(lessc26(T16, T30), ordered1(.(T30, T31))).

Clauses:

orderedc1([]).
orderedc1(.(T3, [])).
orderedc1(.(T16, .(T30, T31))) :- ','(lessc26(T16, T30), orderedc1(.(T30, T31))).
lessc55 :- lessc55.
lessc76(0) :- lessc55.
lessc76(s(T70)) :- lessc76(T70).
lessc40(0, s(T53)).
lessc40(0, 0) :- lessc55.
lessc40(s(T63), 0) :- lessc76(T63).
lessc40(s(T63), s(T76)) :- lessc40(T63, T76).
lessc26(0, T36).
lessc26(s(T45), T49) :- lessc40(T45, T49).

Afs:

ordered1(x1)  =  ordered1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ordered1_in: (b)
less40_in: (b,b)
less76_in: (b)
lessc26_in: (b,b)
lessc40_in: (b,b)
lessc76_in: (b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(s(T45), .(T49, T31))) → U7_G(T45, T49, T31, less40_in_gg(T45, T49))
ORDERED1_IN_G(.(s(T45), .(T49, T31))) → LESS40_IN_GG(T45, T49)
LESS40_IN_GG(0, 0) → U4_GG(less55_in_)
LESS40_IN_GG(0, 0) → LESS55_IN_
LESS55_IN_U1_1(less55_in_)
LESS55_IN_LESS55_IN_
LESS40_IN_GG(s(T63), 0) → U5_GG(T63, less76_in_g(T63))
LESS40_IN_GG(s(T63), 0) → LESS76_IN_G(T63)
LESS76_IN_G(0) → U2_G(less55_in_)
LESS76_IN_G(0) → LESS55_IN_
LESS76_IN_G(s(T70)) → U3_G(T70, less76_in_g(T70))
LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)
LESS40_IN_GG(s(T63), s(T76)) → U6_GG(T63, T76, less40_in_gg(T63, T76))
LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)
ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → U9_G(T16, T30, T31, ordered1_in_g(.(T30, T31)))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(s(T45), .(T49, T31))) → U7_G(T45, T49, T31, less40_in_gg(T45, T49))
ORDERED1_IN_G(.(s(T45), .(T49, T31))) → LESS40_IN_GG(T45, T49)
LESS40_IN_GG(0, 0) → U4_GG(less55_in_)
LESS40_IN_GG(0, 0) → LESS55_IN_
LESS55_IN_U1_1(less55_in_)
LESS55_IN_LESS55_IN_
LESS40_IN_GG(s(T63), 0) → U5_GG(T63, less76_in_g(T63))
LESS40_IN_GG(s(T63), 0) → LESS76_IN_G(T63)
LESS76_IN_G(0) → U2_G(less55_in_)
LESS76_IN_G(0) → LESS55_IN_
LESS76_IN_G(s(T70)) → U3_G(T70, less76_in_g(T70))
LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)
LESS40_IN_GG(s(T63), s(T76)) → U6_GG(T63, T76, less40_in_gg(T63, T76))
LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)
ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → U9_G(T16, T30, T31, ordered1_in_g(.(T30, T31)))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 12 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS55_IN_LESS55_IN_

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS55_IN_LESS55_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS55_IN_LESS55_IN_

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = LESS55_IN_ evaluates to t =LESS55_IN_

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS55_IN_ to LESS55_IN_.



(13) NO

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS76_IN_G(s(T70)) → LESS76_IN_G(T70)
    The graph contains the following edges 1 > 1

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS40_IN_GG(s(T63), s(T76)) → LESS40_IN_GG(T63, T76)
    The graph contains the following edges 1 > 1, 2 > 2

(27) YES

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(29) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

The set Q consists of the following terms:

lessc26_in_gg(x0, x1)
lessc40_in_gg(x0, x1)
lessc55_in_
U13_(x0)
U16_gg(x0)
lessc76_in_g(x0)
U14_g(x0)
U15_g(x0, x1)
U17_gg(x0, x1)
U18_gg(x0, x1, x2)
U19_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(31) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

U13_(lessc55_out_) → lessc55_out_
U16_gg(lessc55_out_) → lessc40_out_gg(0, 0)
U17_gg(T63, lessc76_out_g(T63)) → lessc40_out_gg(s(T63), 0)

Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2·x1 + x2   
POL(0) = 0   
POL(ORDERED1_IN_G(x1)) = 2·x1   
POL(U13_(x1)) = 2·x1   
POL(U14_g(x1)) = x1   
POL(U15_g(x1, x2)) = x1 + x2   
POL(U16_gg(x1)) = x1   
POL(U17_gg(x1, x2)) = x1 + x2   
POL(U18_gg(x1, x2, x3)) = x1 + x2 + x3   
POL(U19_gg(x1, x2, x3)) = 2·x1 + x2 + x3   
POL(U8_G(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + x4   
POL(lessc26_in_gg(x1, x2)) = 2·x1 + 2·x2   
POL(lessc26_out_gg(x1, x2)) = x1 + 2·x2   
POL(lessc40_in_gg(x1, x2)) = 2·x1 + x2   
POL(lessc40_out_gg(x1, x2)) = x1 + x2   
POL(lessc55_in_) = 0   
POL(lessc55_out_) = 1   
POL(lessc76_in_g(x1)) = 2·x1   
POL(lessc76_out_g(x1)) = 1 + x1   
POL(s(x1)) = 2·x1   

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc55_in_U13_(lessc55_in_)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc76_in_g(0) → U14_g(lessc55_in_)
U14_g(lessc55_out_) → lessc76_out_g(0)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)

The set Q consists of the following terms:

lessc26_in_gg(x0, x1)
lessc40_in_gg(x0, x1)
lessc55_in_
U13_(x0)
U16_gg(x0)
lessc76_in_g(x0)
U14_g(x0)
U15_g(x0, x1)
U17_gg(x0, x1)
U18_gg(x0, x1, x2)
U19_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(33) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

U14_g(lessc55_out_) → lessc76_out_g(0)
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2·x1 + x2   
POL(0) = 0   
POL(ORDERED1_IN_G(x1)) = 2·x1   
POL(U13_(x1)) = x1   
POL(U14_g(x1)) = x1   
POL(U15_g(x1, x2)) = x1 + x2   
POL(U16_gg(x1)) = 2·x1   
POL(U17_gg(x1, x2)) = x1 + x2   
POL(U18_gg(x1, x2, x3)) = x1 + x2 + x3   
POL(U19_gg(x1, x2, x3)) = x1 + x2 + x3   
POL(U8_G(x1, x2, x3, x4)) = 2·x1 + 2·x2 + 2·x3 + x4   
POL(lessc26_in_gg(x1, x2)) = x1 + 2·x2   
POL(lessc26_out_gg(x1, x2)) = x1 + 2·x2   
POL(lessc40_in_gg(x1, x2)) = x1 + x2   
POL(lessc40_out_gg(x1, x2)) = x1 + x2   
POL(lessc55_in_) = 0   
POL(lessc55_out_) = 2   
POL(lessc76_in_g(x1)) = x1   
POL(lessc76_out_g(x1)) = x1   
POL(s(x1)) = 2·x1   

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))
U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
lessc76_in_g(0) → U14_g(lessc55_in_)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
lessc55_in_U13_(lessc55_in_)

The set Q consists of the following terms:

lessc26_in_gg(x0, x1)
lessc40_in_gg(x0, x1)
lessc55_in_
U13_(x0)
U16_gg(x0)
lessc76_in_g(x0)
U14_g(x0)
U15_g(x0, x1)
U17_gg(x0, x1)
U18_gg(x0, x1, x2)
U19_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(35) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

ORDERED1_IN_G(.(T16, .(T30, T31))) → U8_G(T16, T30, T31, lessc26_in_gg(T16, T30))

Strictly oriented rules of the TRS R:

lessc26_in_gg(0, T36) → lessc26_out_gg(0, T36)
lessc26_in_gg(s(T45), T49) → U19_gg(T45, T49, lessc40_in_gg(T45, T49))
lessc40_in_gg(0, 0) → U16_gg(lessc55_in_)
lessc40_in_gg(s(T63), 0) → U17_gg(T63, lessc76_in_g(T63))

Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + 2·x1 + 2·x2   
POL(0) = 1   
POL(ORDERED1_IN_G(x1)) = 2 + x1   
POL(U13_(x1)) = x1   
POL(U14_g(x1)) = 1 + 2·x1   
POL(U15_g(x1, x2)) = x1 + x2   
POL(U16_gg(x1)) = 1 + x1   
POL(U17_gg(x1, x2)) = x1 + x2   
POL(U18_gg(x1, x2, x3)) = x1 + x2 + x3   
POL(U19_gg(x1, x2, x3)) = 1 + x1 + x2 + x3   
POL(U8_G(x1, x2, x3, x4)) = 2 + x1 + x2 + 2·x3 + x4   
POL(lessc26_in_gg(x1, x2)) = 2 + x1 + 2·x2   
POL(lessc26_out_gg(x1, x2)) = 1 + x1 + x2   
POL(lessc40_in_gg(x1, x2)) = x1 + x2   
POL(lessc40_out_gg(x1, x2)) = x1 + x2   
POL(lessc55_in_) = 0   
POL(lessc76_in_g(x1)) = x1   
POL(lessc76_out_g(x1)) = x1   
POL(s(x1)) = 2·x1   

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U8_G(T16, T30, T31, lessc26_out_gg(T16, T30)) → ORDERED1_IN_G(.(T30, T31))

The TRS R consists of the following rules:

lessc40_in_gg(0, s(T53)) → lessc40_out_gg(0, s(T53))
lessc40_in_gg(s(T63), s(T76)) → U18_gg(T63, T76, lessc40_in_gg(T63, T76))
U19_gg(T45, T49, lessc40_out_gg(T45, T49)) → lessc26_out_gg(s(T45), T49)
U18_gg(T63, T76, lessc40_out_gg(T63, T76)) → lessc40_out_gg(s(T63), s(T76))
lessc76_in_g(0) → U14_g(lessc55_in_)
lessc76_in_g(s(T70)) → U15_g(T70, lessc76_in_g(T70))
U15_g(T70, lessc76_out_g(T70)) → lessc76_out_g(s(T70))
lessc55_in_U13_(lessc55_in_)

The set Q consists of the following terms:

lessc26_in_gg(x0, x1)
lessc40_in_gg(x0, x1)
lessc55_in_
U13_(x0)
U16_gg(x0)
lessc76_in_g(x0)
U14_g(x0)
U15_g(x0, x1)
U17_gg(x0, x1)
U18_gg(x0, x1, x2)
U19_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(37) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(38) TRUE