(0) Obligation:

Clauses:

ordered([]) :- !.
ordered(.(X1, [])) :- !.
ordered(Xs) :- ','(head(Xs, X), ','(tail(Xs, Ys), ','(head(Ys, Y), ','(tail(Ys, Zs), ','(less(X, s(Y)), ordered(.(Y, Zs))))))).
head([], X2).
head(.(X, X3), X).
tail([], []).
tail(.(X4, Xs), Xs).
less(0, s(X5)) :- !.
less(X, Y) :- ','(p(X, Px), ','(p(Y, Py), less(Px, Py))).
p(0, 0).
p(s(X), X).

Queries:

ordered(g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

ordered1([]).
ordered1(.(T2, [])).
ordered1(.(T6, .(T10, T11))) :- less26(T6, T10).
ordered1(.(T6, .(T10, T11))) :- ','(less26(T6, T10), ordered1(.(T10, T11))).
less51(X53, X52) :- less51(X60, X59).
less69(0, X53) :- less51(X74, X73).
less69(s(T22), X53) :- less69(T22, X74).
less40(0, s(T17)).
less40(0, 0) :- less51(X60, X59).
less40(s(0), 0) :- less51(X74, X73).
less40(s(s(T22)), 0) :- less69(T22, X74).
less40(s(T20), s(T23)) :- less40(T20, T23).
less26(0, T12).
less26(s(0), s(T17)).
less26(s(0), 0) :- less51(X60, X59).
less26(s(s(0)), 0) :- less51(X74, X73).
less26(s(s(s(T22))), 0) :- less69(T22, X74).
less26(s(s(T20)), s(T23)) :- less40(T20, T23).

Queries:

ordered1(g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ordered1_in: (b)
less26_in: (b,b)
less51_in: (f,f)
less69_in: (b,f)
less40_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(0), 0) → U10_GG(less51_in_aa(X60, X59))
LESS26_IN_GG(s(0), 0) → LESS51_IN_AA(X60, X59)
LESS51_IN_AA(X53, X52) → U3_AA(X53, X52, less51_in_aa(X60, X59))
LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)
LESS26_IN_GG(s(s(0)), 0) → U11_GG(less51_in_aa(X74, X73))
LESS26_IN_GG(s(s(0)), 0) → LESS51_IN_AA(X74, X73)
LESS26_IN_GG(s(s(s(T22))), 0) → U12_GG(T22, less69_in_ga(T22, X74))
LESS26_IN_GG(s(s(s(T22))), 0) → LESS69_IN_GA(T22, X74)
LESS69_IN_GA(0, X53) → U4_GA(X53, less51_in_aa(X74, X73))
LESS69_IN_GA(0, X53) → LESS51_IN_AA(X74, X73)
LESS69_IN_GA(s(T22), X53) → U5_GA(T22, X53, less69_in_ga(T22, X74))
LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)
LESS26_IN_GG(s(s(T20)), s(T23)) → U13_GG(T20, T23, less40_in_gg(T20, T23))
LESS26_IN_GG(s(s(T20)), s(T23)) → LESS40_IN_GG(T20, T23)
LESS40_IN_GG(0, 0) → U6_GG(less51_in_aa(X60, X59))
LESS40_IN_GG(0, 0) → LESS51_IN_AA(X60, X59)
LESS40_IN_GG(s(0), 0) → U7_GG(less51_in_aa(X74, X73))
LESS40_IN_GG(s(0), 0) → LESS51_IN_AA(X74, X73)
LESS40_IN_GG(s(s(T22)), 0) → U8_GG(T22, less69_in_ga(T22, X74))
LESS40_IN_GG(s(s(T22)), 0) → LESS69_IN_GA(T22, X74)
LESS40_IN_GG(s(T20), s(T23)) → U9_GG(T20, T23, less40_in_gg(T20, T23))
LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U10_GG(x1)  =  U10_GG(x1)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA
U3_AA(x1, x2, x3)  =  U3_AA(x3)
U11_GG(x1)  =  U11_GG(x1)
U12_GG(x1, x2)  =  U12_GG(x1, x2)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U4_GA(x1, x2)  =  U4_GA(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U13_GG(x1, x2, x3)  =  U13_GG(x1, x2, x3)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)
U6_GG(x1)  =  U6_GG(x1)
U7_GG(x1)  =  U7_GG(x1)
U8_GG(x1, x2)  =  U8_GG(x1, x2)
U9_GG(x1, x2, x3)  =  U9_GG(x1, x2, x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(0), 0) → U10_GG(less51_in_aa(X60, X59))
LESS26_IN_GG(s(0), 0) → LESS51_IN_AA(X60, X59)
LESS51_IN_AA(X53, X52) → U3_AA(X53, X52, less51_in_aa(X60, X59))
LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)
LESS26_IN_GG(s(s(0)), 0) → U11_GG(less51_in_aa(X74, X73))
LESS26_IN_GG(s(s(0)), 0) → LESS51_IN_AA(X74, X73)
LESS26_IN_GG(s(s(s(T22))), 0) → U12_GG(T22, less69_in_ga(T22, X74))
LESS26_IN_GG(s(s(s(T22))), 0) → LESS69_IN_GA(T22, X74)
LESS69_IN_GA(0, X53) → U4_GA(X53, less51_in_aa(X74, X73))
LESS69_IN_GA(0, X53) → LESS51_IN_AA(X74, X73)
LESS69_IN_GA(s(T22), X53) → U5_GA(T22, X53, less69_in_ga(T22, X74))
LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)
LESS26_IN_GG(s(s(T20)), s(T23)) → U13_GG(T20, T23, less40_in_gg(T20, T23))
LESS26_IN_GG(s(s(T20)), s(T23)) → LESS40_IN_GG(T20, T23)
LESS40_IN_GG(0, 0) → U6_GG(less51_in_aa(X60, X59))
LESS40_IN_GG(0, 0) → LESS51_IN_AA(X60, X59)
LESS40_IN_GG(s(0), 0) → U7_GG(less51_in_aa(X74, X73))
LESS40_IN_GG(s(0), 0) → LESS51_IN_AA(X74, X73)
LESS40_IN_GG(s(s(T22)), 0) → U8_GG(T22, less69_in_ga(T22, X74))
LESS40_IN_GG(s(s(T22)), 0) → LESS69_IN_GA(T22, X74)
LESS40_IN_GG(s(T20), s(T23)) → U9_GG(T20, T23, less40_in_gg(T20, T23))
LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U10_GG(x1)  =  U10_GG(x1)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA
U3_AA(x1, x2, x3)  =  U3_AA(x3)
U11_GG(x1)  =  U11_GG(x1)
U12_GG(x1, x2)  =  U12_GG(x1, x2)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U4_GA(x1, x2)  =  U4_GA(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x1, x3)
U13_GG(x1, x2, x3)  =  U13_GG(x1, x2, x3)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)
U6_GG(x1)  =  U6_GG(x1)
U7_GG(x1)  =  U7_GG(x1)
U8_GG(x1, x2)  =  U8_GG(x1, x2)
U9_GG(x1, x2, x3)  =  U9_GG(x1, x2, x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 21 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)

R is empty.
The argument filtering Pi contains the following mapping:
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS51_IN_AALESS51_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = LESS51_IN_AA evaluates to t =LESS51_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS51_IN_AA to LESS51_IN_AA.



(15) FALSE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22)) → LESS69_IN_GA(T22)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GA(s(T22)) → LESS69_IN_GA(T22)
    The graph contains the following edges 1 > 1

(22) TRUE

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
    The graph contains the following edges 1 > 1, 2 > 2

(29) TRUE

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g(x1)
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x1, x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x1, x2, x3, x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg(x1, x2)
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x1, x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga(x1)
U5_ga(x1, x2, x3)  =  U5_ga(x1, x3)
U13_gg(x1, x2, x3)  =  U13_gg(x1, x2, x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg(x1, x2)
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x1, x2)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x1, x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
U10_gg(less51_out_aa) → less26_out_gg(s(0), 0)
U11_gg(less51_out_aa) → less26_out_gg(s(s(0)), 0)
U12_gg(T22, less69_out_ga(T22)) → less26_out_gg(s(s(s(T22))), 0)
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
less51_in_aaU3_aa(less51_in_aa)
less69_in_ga(0) → U4_ga(less51_in_aa)
less69_in_ga(s(T22)) → U5_ga(T22, less69_in_ga(T22))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22))
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U3_aa(less51_out_aa) → less51_out_aa
U4_ga(less51_out_aa) → less69_out_ga(0)
U5_ga(T22, less69_out_ga(T22)) → less69_out_ga(s(T22))
U6_gg(less51_out_aa) → less40_out_gg(0, 0)
U7_gg(less51_out_aa) → less40_out_gg(s(0), 0)
U8_gg(T22, less69_out_ga(T22)) → less40_out_gg(s(s(T22)), 0)
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))

The set Q consists of the following terms:

less26_in_gg(x0, x1)
U10_gg(x0)
U11_gg(x0)
U12_gg(x0, x1)
U13_gg(x0, x1, x2)
less51_in_aa
less69_in_ga(x0)
less40_in_gg(x0, x1)
U3_aa(x0)
U4_ga(x0)
U5_ga(x0, x1)
U6_gg(x0)
U7_gg(x0)
U8_gg(x0, x1)
U9_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(35) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = x1 + x2   
POL(0) = 1   
POL(ORDERED1_IN_G(x1)) = x1   
POL(U10_gg(x1)) = 1 + x1   
POL(U11_gg(x1)) = 1   
POL(U12_gg(x1, x2)) = 1   
POL(U13_gg(x1, x2, x3)) = 1   
POL(U1_G(x1, x2, x3, x4)) = x2 + x3 + x4   
POL(U3_aa(x1)) = x1   
POL(U4_ga(x1)) = 0   
POL(U5_ga(x1, x2)) = 0   
POL(U6_gg(x1)) = 0   
POL(U7_gg(x1)) = 0   
POL(U8_gg(x1, x2)) = 0   
POL(U9_gg(x1, x2, x3)) = 0   
POL(less26_in_gg(x1, x2)) = x1   
POL(less26_out_gg(x1, x2)) = 1   
POL(less40_in_gg(x1, x2)) = 0   
POL(less40_out_gg(x1, x2)) = 0   
POL(less51_in_aa) = 0   
POL(less51_out_aa) = 1   
POL(less69_in_ga(x1)) = 0   
POL(less69_out_ga(x1)) = 0   
POL(s(x1)) = 1 + x1   

The following usable rules [FROCOS05] were oriented:

less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less51_in_aaU3_aa(less51_in_aa)
U10_gg(less51_out_aa) → less26_out_gg(s(0), 0)
U11_gg(less51_out_aa) → less26_out_gg(s(s(0)), 0)
U12_gg(T22, less69_out_ga(T22)) → less26_out_gg(s(s(s(T22))), 0)
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U3_aa(less51_out_aa) → less51_out_aa

(36) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
U10_gg(less51_out_aa) → less26_out_gg(s(0), 0)
U11_gg(less51_out_aa) → less26_out_gg(s(s(0)), 0)
U12_gg(T22, less69_out_ga(T22)) → less26_out_gg(s(s(s(T22))), 0)
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
less51_in_aaU3_aa(less51_in_aa)
less69_in_ga(0) → U4_ga(less51_in_aa)
less69_in_ga(s(T22)) → U5_ga(T22, less69_in_ga(T22))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22))
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U3_aa(less51_out_aa) → less51_out_aa
U4_ga(less51_out_aa) → less69_out_ga(0)
U5_ga(T22, less69_out_ga(T22)) → less69_out_ga(s(T22))
U6_gg(less51_out_aa) → less40_out_gg(0, 0)
U7_gg(less51_out_aa) → less40_out_gg(s(0), 0)
U8_gg(T22, less69_out_ga(T22)) → less40_out_gg(s(s(T22)), 0)
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))

The set Q consists of the following terms:

less26_in_gg(x0, x1)
U10_gg(x0)
U11_gg(x0)
U12_gg(x0, x1)
U13_gg(x0, x1, x2)
less51_in_aa
less69_in_ga(x0)
less40_in_gg(x0, x1)
U3_aa(x0)
U4_ga(x0)
U5_ga(x0, x1)
U6_gg(x0)
U7_gg(x0)
U8_gg(x0, x1)
U9_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(37) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(38) TRUE

(39) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ordered1_in: (b)
less26_in: (b,b)
less51_in: (f,f)
less69_in: (b,f)
less40_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(40) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)

(41) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(0), 0) → U10_GG(less51_in_aa(X60, X59))
LESS26_IN_GG(s(0), 0) → LESS51_IN_AA(X60, X59)
LESS51_IN_AA(X53, X52) → U3_AA(X53, X52, less51_in_aa(X60, X59))
LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)
LESS26_IN_GG(s(s(0)), 0) → U11_GG(less51_in_aa(X74, X73))
LESS26_IN_GG(s(s(0)), 0) → LESS51_IN_AA(X74, X73)
LESS26_IN_GG(s(s(s(T22))), 0) → U12_GG(T22, less69_in_ga(T22, X74))
LESS26_IN_GG(s(s(s(T22))), 0) → LESS69_IN_GA(T22, X74)
LESS69_IN_GA(0, X53) → U4_GA(X53, less51_in_aa(X74, X73))
LESS69_IN_GA(0, X53) → LESS51_IN_AA(X74, X73)
LESS69_IN_GA(s(T22), X53) → U5_GA(T22, X53, less69_in_ga(T22, X74))
LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)
LESS26_IN_GG(s(s(T20)), s(T23)) → U13_GG(T20, T23, less40_in_gg(T20, T23))
LESS26_IN_GG(s(s(T20)), s(T23)) → LESS40_IN_GG(T20, T23)
LESS40_IN_GG(0, 0) → U6_GG(less51_in_aa(X60, X59))
LESS40_IN_GG(0, 0) → LESS51_IN_AA(X60, X59)
LESS40_IN_GG(s(0), 0) → U7_GG(less51_in_aa(X74, X73))
LESS40_IN_GG(s(0), 0) → LESS51_IN_AA(X74, X73)
LESS40_IN_GG(s(s(T22)), 0) → U8_GG(T22, less69_in_ga(T22, X74))
LESS40_IN_GG(s(s(T22)), 0) → LESS69_IN_GA(T22, X74)
LESS40_IN_GG(s(T20), s(T23)) → U9_GG(T20, T23, less40_in_gg(T20, T23))
LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U10_GG(x1)  =  U10_GG(x1)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA
U3_AA(x1, x2, x3)  =  U3_AA(x3)
U11_GG(x1)  =  U11_GG(x1)
U12_GG(x1, x2)  =  U12_GG(x2)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U4_GA(x1, x2)  =  U4_GA(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x3)
U13_GG(x1, x2, x3)  =  U13_GG(x3)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)
U6_GG(x1)  =  U6_GG(x1)
U7_GG(x1)  =  U7_GG(x1)
U8_GG(x1, x2)  =  U8_GG(x2)
U9_GG(x1, x2, x3)  =  U9_GG(x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x4)

We have to consider all (P,R,Pi)-chains

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(0), 0) → U10_GG(less51_in_aa(X60, X59))
LESS26_IN_GG(s(0), 0) → LESS51_IN_AA(X60, X59)
LESS51_IN_AA(X53, X52) → U3_AA(X53, X52, less51_in_aa(X60, X59))
LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)
LESS26_IN_GG(s(s(0)), 0) → U11_GG(less51_in_aa(X74, X73))
LESS26_IN_GG(s(s(0)), 0) → LESS51_IN_AA(X74, X73)
LESS26_IN_GG(s(s(s(T22))), 0) → U12_GG(T22, less69_in_ga(T22, X74))
LESS26_IN_GG(s(s(s(T22))), 0) → LESS69_IN_GA(T22, X74)
LESS69_IN_GA(0, X53) → U4_GA(X53, less51_in_aa(X74, X73))
LESS69_IN_GA(0, X53) → LESS51_IN_AA(X74, X73)
LESS69_IN_GA(s(T22), X53) → U5_GA(T22, X53, less69_in_ga(T22, X74))
LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)
LESS26_IN_GG(s(s(T20)), s(T23)) → U13_GG(T20, T23, less40_in_gg(T20, T23))
LESS26_IN_GG(s(s(T20)), s(T23)) → LESS40_IN_GG(T20, T23)
LESS40_IN_GG(0, 0) → U6_GG(less51_in_aa(X60, X59))
LESS40_IN_GG(0, 0) → LESS51_IN_AA(X60, X59)
LESS40_IN_GG(s(0), 0) → U7_GG(less51_in_aa(X74, X73))
LESS40_IN_GG(s(0), 0) → LESS51_IN_AA(X74, X73)
LESS40_IN_GG(s(s(T22)), 0) → U8_GG(T22, less69_in_ga(T22, X74))
LESS40_IN_GG(s(s(T22)), 0) → LESS69_IN_GA(T22, X74)
LESS40_IN_GG(s(T20), s(T23)) → U9_GG(T20, T23, less40_in_gg(T20, T23))
LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U10_GG(x1)  =  U10_GG(x1)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA
U3_AA(x1, x2, x3)  =  U3_AA(x3)
U11_GG(x1)  =  U11_GG(x1)
U12_GG(x1, x2)  =  U12_GG(x2)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)
U4_GA(x1, x2)  =  U4_GA(x2)
U5_GA(x1, x2, x3)  =  U5_GA(x3)
U13_GG(x1, x2, x3)  =  U13_GG(x3)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)
U6_GG(x1)  =  U6_GG(x1)
U7_GG(x1)  =  U7_GG(x1)
U8_GG(x1, x2)  =  U8_GG(x2)
U9_GG(x1, x2, x3)  =  U9_GG(x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x4)

We have to consider all (P,R,Pi)-chains

(43) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 4 SCCs with 21 less nodes.

(44) Complex Obligation (AND)

(45) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA

We have to consider all (P,R,Pi)-chains

(46) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(47) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS51_IN_AA(X53, X52) → LESS51_IN_AA(X60, X59)

R is empty.
The argument filtering Pi contains the following mapping:
LESS51_IN_AA(x1, x2)  =  LESS51_IN_AA

We have to consider all (P,R,Pi)-chains

(48) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS51_IN_AALESS51_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(50) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = LESS51_IN_AA evaluates to t =LESS51_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from LESS51_IN_AA to LESS51_IN_AA.



(51) FALSE

(52) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(53) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(54) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22), X53) → LESS69_IN_GA(T22, X74)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS69_IN_GA(x1, x2)  =  LESS69_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(55) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS69_IN_GA(s(T22)) → LESS69_IN_GA(T22)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(57) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS69_IN_GA(s(T22)) → LESS69_IN_GA(T22)
    The graph contains the following edges 1 > 1

(58) TRUE

(59) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
LESS40_IN_GG(x1, x2)  =  LESS40_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(60) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(61) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(62) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(64) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS40_IN_GG(s(T20), s(T23)) → LESS40_IN_GG(T20, T23)
    The graph contains the following edges 1 > 1, 2 > 2

(65) TRUE

(66) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(67) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(68) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T12) → less26_out_gg(0, T12)
less26_in_gg(s(0), s(T17)) → less26_out_gg(s(0), s(T17))
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa(X60, X59))
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa(X74, X73))
less26_in_gg(s(s(s(T22))), 0) → U12_gg(T22, less69_in_ga(T22, X74))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(T20, T23, less40_in_gg(T20, T23))
U10_gg(less51_out_aa(X60, X59)) → less26_out_gg(s(0), 0)
U11_gg(less51_out_aa(X74, X73)) → less26_out_gg(s(s(0)), 0)
U12_gg(T22, less69_out_ga(T22, X74)) → less26_out_gg(s(s(s(T22))), 0)
U13_gg(T20, T23, less40_out_gg(T20, T23)) → less26_out_gg(s(s(T20)), s(T23))
less51_in_aa(X53, X52) → U3_aa(X53, X52, less51_in_aa(X60, X59))
less69_in_ga(0, X53) → U4_ga(X53, less51_in_aa(X74, X73))
less69_in_ga(s(T22), X53) → U5_ga(T22, X53, less69_in_ga(T22, X74))
less40_in_gg(0, s(T17)) → less40_out_gg(0, s(T17))
less40_in_gg(0, 0) → U6_gg(less51_in_aa(X60, X59))
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa(X74, X73))
less40_in_gg(s(s(T22)), 0) → U8_gg(T22, less69_in_ga(T22, X74))
less40_in_gg(s(T20), s(T23)) → U9_gg(T20, T23, less40_in_gg(T20, T23))
U3_aa(X53, X52, less51_out_aa(X60, X59)) → less51_out_aa(X53, X52)
U4_ga(X53, less51_out_aa(X74, X73)) → less69_out_ga(0, X53)
U5_ga(T22, X53, less69_out_ga(T22, X74)) → less69_out_ga(s(T22), X53)
U6_gg(less51_out_aa(X60, X59)) → less40_out_gg(0, 0)
U7_gg(less51_out_aa(X74, X73)) → less40_out_gg(s(0), 0)
U8_gg(T22, less69_out_ga(T22, X74)) → less40_out_gg(s(s(T22)), 0)
U9_gg(T20, T23, less40_out_gg(T20, T23)) → less40_out_gg(s(T20), s(T23))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U10_gg(x1)  =  U10_gg(x1)
less51_in_aa(x1, x2)  =  less51_in_aa
U3_aa(x1, x2, x3)  =  U3_aa(x3)
less51_out_aa(x1, x2)  =  less51_out_aa
U11_gg(x1)  =  U11_gg(x1)
U12_gg(x1, x2)  =  U12_gg(x2)
less69_in_ga(x1, x2)  =  less69_in_ga(x1)
U4_ga(x1, x2)  =  U4_ga(x2)
less69_out_ga(x1, x2)  =  less69_out_ga
U5_ga(x1, x2, x3)  =  U5_ga(x3)
U13_gg(x1, x2, x3)  =  U13_gg(x3)
less40_in_gg(x1, x2)  =  less40_in_gg(x1, x2)
less40_out_gg(x1, x2)  =  less40_out_gg
U6_gg(x1)  =  U6_gg(x1)
U7_gg(x1)  =  U7_gg(x1)
U8_gg(x1, x2)  =  U8_gg(x2)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(69) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(70) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T10, T11, less26_out_gg) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T12) → less26_out_gg
less26_in_gg(s(0), s(T17)) → less26_out_gg
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(less69_in_ga(T22))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(less40_in_gg(T20, T23))
U10_gg(less51_out_aa) → less26_out_gg
U11_gg(less51_out_aa) → less26_out_gg
U12_gg(less69_out_ga) → less26_out_gg
U13_gg(less40_out_gg) → less26_out_gg
less51_in_aaU3_aa(less51_in_aa)
less69_in_ga(0) → U4_ga(less51_in_aa)
less69_in_ga(s(T22)) → U5_ga(less69_in_ga(T22))
less40_in_gg(0, s(T17)) → less40_out_gg
less40_in_gg(0, 0) → U6_gg(less51_in_aa)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa)
less40_in_gg(s(s(T22)), 0) → U8_gg(less69_in_ga(T22))
less40_in_gg(s(T20), s(T23)) → U9_gg(less40_in_gg(T20, T23))
U3_aa(less51_out_aa) → less51_out_aa
U4_ga(less51_out_aa) → less69_out_ga
U5_ga(less69_out_ga) → less69_out_ga
U6_gg(less51_out_aa) → less40_out_gg
U7_gg(less51_out_aa) → less40_out_gg
U8_gg(less69_out_ga) → less40_out_gg
U9_gg(less40_out_gg) → less40_out_gg

The set Q consists of the following terms:

less26_in_gg(x0, x1)
U10_gg(x0)
U11_gg(x0)
U12_gg(x0)
U13_gg(x0)
less51_in_aa
less69_in_ga(x0)
less40_in_gg(x0, x1)
U3_aa(x0)
U4_ga(x0)
U5_ga(x0)
U6_gg(x0)
U7_gg(x0)
U8_gg(x0)
U9_gg(x0)

We have to consider all (P,Q,R)-chains.

(71) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

U1_G(T10, T11, less26_out_gg) → ORDERED1_IN_G(.(T10, T11))
The following rules are removed from R:

less26_in_gg(0, T12) → less26_out_gg
less26_in_gg(s(0), s(T17)) → less26_out_gg
less26_in_gg(s(0), 0) → U10_gg(less51_in_aa)
less26_in_gg(s(s(0)), 0) → U11_gg(less51_in_aa)
less26_in_gg(s(s(s(T22))), 0) → U12_gg(less69_in_ga(T22))
less26_in_gg(s(s(T20)), s(T23)) → U13_gg(less40_in_gg(T20, T23))
less40_in_gg(0, s(T17)) → less40_out_gg
less40_in_gg(0, 0) → U6_gg(less51_in_aa)
less40_in_gg(s(0), 0) → U7_gg(less51_in_aa)
less40_in_gg(s(s(T22)), 0) → U8_gg(less69_in_ga(T22))
less40_in_gg(s(T20), s(T23)) → U9_gg(less40_in_gg(T20, T23))
U13_gg(less40_out_gg) → less26_out_gg
U9_gg(less40_out_gg) → less40_out_gg
less69_in_ga(0) → U4_ga(less51_in_aa)
less69_in_ga(s(T22)) → U5_ga(less69_in_ga(T22))
U8_gg(less69_out_ga) → less40_out_gg
U5_ga(less69_out_ga) → less69_out_ga
U4_ga(less51_out_aa) → less69_out_ga
U3_aa(less51_out_aa) → less51_out_aa
U7_gg(less51_out_aa) → less40_out_gg
U6_gg(less51_out_aa) → less40_out_gg
U11_gg(less51_out_aa) → less26_out_gg
U10_gg(less51_out_aa) → less26_out_gg
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = x1 + 2·x2   
POL(0) = 2   
POL(ORDERED1_IN_G(x1)) = 1 + x1   
POL(U10_gg(x1)) = 2·x1   
POL(U11_gg(x1)) = 2·x1   
POL(U12_gg(x1)) = 2·x1   
POL(U13_gg(x1)) = 2 + x1   
POL(U1_G(x1, x2, x3)) = x1 + 2·x2 + x3   
POL(U3_aa(x1)) = 2·x1   
POL(U4_ga(x1)) = 2·x1   
POL(U5_ga(x1)) = 2·x1   
POL(U6_gg(x1)) = 2 + 2·x1   
POL(U7_gg(x1)) = 2 + x1   
POL(U8_gg(x1)) = 2 + 2·x1   
POL(U9_gg(x1)) = 2 + 2·x1   
POL(less26_in_gg(x1, x2)) = 1 + x1 + x2   
POL(less26_out_gg) = 2   
POL(less40_in_gg(x1, x2)) = 2 + x1 + x2   
POL(less40_out_gg) = 1   
POL(less51_in_aa) = 0   
POL(less51_out_aa) = 2   
POL(less69_in_ga(x1)) = 1 + 2·x1   
POL(less69_out_ga) = 1   
POL(s(x1)) = 2 + 2·x1   

(72) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less51_in_aaU3_aa(less51_in_aa)
U12_gg(less69_out_ga) → less26_out_gg

The set Q consists of the following terms:

less26_in_gg(x0, x1)
U10_gg(x0)
U11_gg(x0)
U12_gg(x0)
U13_gg(x0)
less51_in_aa
less69_in_ga(x0)
less40_in_gg(x0, x1)
U3_aa(x0)
U4_ga(x0)
U5_ga(x0)
U6_gg(x0)
U7_gg(x0)
U8_gg(x0)
U9_gg(x0)

We have to consider all (P,Q,R)-chains.

(73) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(74) TRUE