(0) Obligation:

Clauses:

ordered([]) :- !.
ordered(.(X1, [])) :- !.
ordered(Xs) :- ','(head(Xs, X), ','(tail(Xs, Ys), ','(head(Ys, Y), ','(tail(Ys, Zs), ','(less(X, s(Y)), ordered(.(Y, Zs))))))).
head([], X2).
head(.(X, X3), X).
tail([], []).
tail(.(X4, Xs), Xs).
less(0, Y) :- ','(!, eq(Y, s(X5))).
less(X, Y) :- ','(p(X, Px), ','(p(Y, Py), less(Px, Py))).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

ordered(g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

ordered1([]).
ordered1(.(T2, [])).
ordered1(.(T6, .(T10, T11))) :- less26(T6, T10).
ordered1(.(T6, .(T10, T11))) :- ','(less26(T6, T10), ordered1(.(T10, T11))).
less57(s(T25), X59) :- less57(T25, X71).
less42(0, s(T20)).
less42(s(s(T25)), 0) :- less57(T25, X71).
less42(s(T23), s(T26)) :- less42(T23, T26).
less26(0, T13).
less26(s(0), s(T20)).
less26(s(s(s(T25))), 0) :- less57(T25, X71).
less26(s(s(T23)), s(T26)) :- less42(T23, T26).

Queries:

ordered1(g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
ordered1_in: (b)
less26_in: (b,b)
less57_in: (b,f)
less42_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(s(s(T25))), 0) → U6_GG(T25, less57_in_ga(T25, X71))
LESS26_IN_GG(s(s(s(T25))), 0) → LESS57_IN_GA(T25, X71)
LESS57_IN_GA(s(T25), X59) → U3_GA(T25, X59, less57_in_ga(T25, X71))
LESS57_IN_GA(s(T25), X59) → LESS57_IN_GA(T25, X71)
LESS26_IN_GG(s(s(T23)), s(T26)) → U7_GG(T23, T26, less42_in_gg(T23, T26))
LESS26_IN_GG(s(s(T23)), s(T26)) → LESS42_IN_GG(T23, T26)
LESS42_IN_GG(s(s(T25)), 0) → U4_GG(T25, less57_in_ga(T25, X71))
LESS42_IN_GG(s(s(T25)), 0) → LESS57_IN_GA(T25, X71)
LESS42_IN_GG(s(T23), s(T26)) → U5_GG(T23, T26, less42_in_gg(T23, T26))
LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U6_GG(x1, x2)  =  U6_GG(x2)
LESS57_IN_GA(x1, x2)  =  LESS57_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x3)
U7_GG(x1, x2, x3)  =  U7_GG(x3)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))
ORDERED1_IN_G(.(T6, .(T10, T11))) → LESS26_IN_GG(T6, T10)
LESS26_IN_GG(s(s(s(T25))), 0) → U6_GG(T25, less57_in_ga(T25, X71))
LESS26_IN_GG(s(s(s(T25))), 0) → LESS57_IN_GA(T25, X71)
LESS57_IN_GA(s(T25), X59) → U3_GA(T25, X59, less57_in_ga(T25, X71))
LESS57_IN_GA(s(T25), X59) → LESS57_IN_GA(T25, X71)
LESS26_IN_GG(s(s(T23)), s(T26)) → U7_GG(T23, T26, less42_in_gg(T23, T26))
LESS26_IN_GG(s(s(T23)), s(T26)) → LESS42_IN_GG(T23, T26)
LESS42_IN_GG(s(s(T25)), 0) → U4_GG(T25, less57_in_ga(T25, X71))
LESS42_IN_GG(s(s(T25)), 0) → LESS57_IN_GA(T25, X71)
LESS42_IN_GG(s(T23), s(T26)) → U5_GG(T23, T26, less42_in_gg(T23, T26))
LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → U2_G(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)
LESS26_IN_GG(x1, x2)  =  LESS26_IN_GG(x1, x2)
U6_GG(x1, x2)  =  U6_GG(x2)
LESS57_IN_GA(x1, x2)  =  LESS57_IN_GA(x1)
U3_GA(x1, x2, x3)  =  U3_GA(x3)
U7_GG(x1, x2, x3)  =  U7_GG(x3)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2, x3)  =  U5_GG(x3)
U2_G(x1, x2, x3, x4)  =  U2_G(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 10 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS57_IN_GA(s(T25), X59) → LESS57_IN_GA(T25, X71)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
LESS57_IN_GA(x1, x2)  =  LESS57_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS57_IN_GA(s(T25), X59) → LESS57_IN_GA(T25, X71)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS57_IN_GA(x1, x2)  =  LESS57_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS57_IN_GA(s(T25)) → LESS57_IN_GA(T25)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS57_IN_GA(s(T25)) → LESS57_IN_GA(T25)
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
LESS42_IN_GG(x1, x2)  =  LESS42_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS42_IN_GG(s(T23), s(T26)) → LESS42_IN_GG(T23, T26)
    The graph contains the following edges 1 > 1, 2 > 2

(22) TRUE

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

ordered1_in_g([]) → ordered1_out_g([])
ordered1_in_g(.(T2, [])) → ordered1_out_g(.(T2, []))
ordered1_in_g(.(T6, .(T10, T11))) → U1_g(T6, T10, T11, less26_in_gg(T6, T10))
less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → ordered1_out_g(.(T6, .(T10, T11)))
U1_g(T6, T10, T11, less26_out_gg(T6, T10)) → U2_g(T6, T10, T11, ordered1_in_g(.(T10, T11)))
U2_g(T6, T10, T11, ordered1_out_g(.(T10, T11))) → ordered1_out_g(.(T6, .(T10, T11)))

The argument filtering Pi contains the following mapping:
ordered1_in_g(x1)  =  ordered1_in_g(x1)
[]  =  []
ordered1_out_g(x1)  =  ordered1_out_g
.(x1, x2)  =  .(x1, x2)
U1_g(x1, x2, x3, x4)  =  U1_g(x2, x3, x4)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
U2_g(x1, x2, x3, x4)  =  U2_g(x4)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

U1_G(T6, T10, T11, less26_out_gg(T6, T10)) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T6, T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T13) → less26_out_gg(0, T13)
less26_in_gg(s(0), s(T20)) → less26_out_gg(s(0), s(T20))
less26_in_gg(s(s(s(T25))), 0) → U6_gg(T25, less57_in_ga(T25, X71))
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(T23, T26, less42_in_gg(T23, T26))
U6_gg(T25, less57_out_ga(T25, X71)) → less26_out_gg(s(s(s(T25))), 0)
U7_gg(T23, T26, less42_out_gg(T23, T26)) → less26_out_gg(s(s(T23)), s(T26))
less57_in_ga(s(T25), X59) → U3_ga(T25, X59, less57_in_ga(T25, X71))
less42_in_gg(0, s(T20)) → less42_out_gg(0, s(T20))
less42_in_gg(s(s(T25)), 0) → U4_gg(T25, less57_in_ga(T25, X71))
less42_in_gg(s(T23), s(T26)) → U5_gg(T23, T26, less42_in_gg(T23, T26))
U3_ga(T25, X59, less57_out_ga(T25, X71)) → less57_out_ga(s(T25), X59)
U4_gg(T25, less57_out_ga(T25, X71)) → less42_out_gg(s(s(T25)), 0)
U5_gg(T23, T26, less42_out_gg(T23, T26)) → less42_out_gg(s(T23), s(T26))

The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
less26_in_gg(x1, x2)  =  less26_in_gg(x1, x2)
0  =  0
less26_out_gg(x1, x2)  =  less26_out_gg
s(x1)  =  s(x1)
U6_gg(x1, x2)  =  U6_gg(x2)
less57_in_ga(x1, x2)  =  less57_in_ga(x1)
U3_ga(x1, x2, x3)  =  U3_ga(x3)
less57_out_ga(x1, x2)  =  less57_out_ga
U7_gg(x1, x2, x3)  =  U7_gg(x3)
less42_in_gg(x1, x2)  =  less42_in_gg(x1, x2)
less42_out_gg(x1, x2)  =  less42_out_gg
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2, x3)  =  U5_gg(x3)
ORDERED1_IN_G(x1)  =  ORDERED1_IN_G(x1)
U1_G(x1, x2, x3, x4)  =  U1_G(x2, x3, x4)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T10, T11, less26_out_gg) → ORDERED1_IN_G(.(T10, T11))
ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T10, T11, less26_in_gg(T6, T10))

The TRS R consists of the following rules:

less26_in_gg(0, T13) → less26_out_gg
less26_in_gg(s(0), s(T20)) → less26_out_gg
less26_in_gg(s(s(s(T25))), 0) → U6_gg(less57_in_ga(T25))
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(less42_in_gg(T23, T26))
U6_gg(less57_out_ga) → less26_out_gg
U7_gg(less42_out_gg) → less26_out_gg
less57_in_ga(s(T25)) → U3_ga(less57_in_ga(T25))
less42_in_gg(0, s(T20)) → less42_out_gg
less42_in_gg(s(s(T25)), 0) → U4_gg(less57_in_ga(T25))
less42_in_gg(s(T23), s(T26)) → U5_gg(less42_in_gg(T23, T26))
U3_ga(less57_out_ga) → less57_out_ga
U4_gg(less57_out_ga) → less42_out_gg
U5_gg(less42_out_gg) → less42_out_gg

The set Q consists of the following terms:

less26_in_gg(x0, x1)
U6_gg(x0)
U7_gg(x0)
less57_in_ga(x0)
less42_in_gg(x0, x1)
U3_ga(x0)
U4_gg(x0)
U5_gg(x0)

We have to consider all (P,Q,R)-chains.

(28) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

ORDERED1_IN_G(.(T6, .(T10, T11))) → U1_G(T10, T11, less26_in_gg(T6, T10))
The following rules are removed from R:

less26_in_gg(0, T13) → less26_out_gg
less26_in_gg(s(0), s(T20)) → less26_out_gg
less26_in_gg(s(s(s(T25))), 0) → U6_gg(less57_in_ga(T25))
less26_in_gg(s(s(T23)), s(T26)) → U7_gg(less42_in_gg(T23, T26))
less42_in_gg(0, s(T20)) → less42_out_gg
less42_in_gg(s(s(T25)), 0) → U4_gg(less57_in_ga(T25))
less42_in_gg(s(T23), s(T26)) → U5_gg(less42_in_gg(T23, T26))
U7_gg(less42_out_gg) → less26_out_gg
U5_gg(less42_out_gg) → less42_out_gg
less57_in_ga(s(T25)) → U3_ga(less57_in_ga(T25))
U4_gg(less57_out_ga) → less42_out_gg
U3_ga(less57_out_ga) → less57_out_ga
U6_gg(less57_out_ga) → less26_out_gg
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(0) = 0   
POL(ORDERED1_IN_G(x1)) = 2 + x1   
POL(U1_G(x1, x2, x3)) = 2 + 2·x1 + 2·x2 + x3   
POL(U3_ga(x1)) = 1 + 2·x1   
POL(U4_gg(x1)) = 2 + x1   
POL(U5_gg(x1)) = 2 + 2·x1   
POL(U6_gg(x1)) = 1 + 2·x1   
POL(U7_gg(x1)) = 2 + x1   
POL(less26_in_gg(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(less26_out_gg) = 2   
POL(less42_in_gg(x1, x2)) = 1 + x1 + x2   
POL(less42_out_gg) = 1   
POL(less57_in_ga(x1)) = x1   
POL(less57_out_ga) = 2   
POL(s(x1)) = 2 + 2·x1   

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U1_G(T10, T11, less26_out_gg) → ORDERED1_IN_G(.(T10, T11))

R is empty.
The set Q consists of the following terms:

less26_in_gg(x0, x1)
U6_gg(x0)
U7_gg(x0)
less57_in_ga(x0)
less42_in_gg(x0, x1)
U3_ga(x0)
U4_gg(x0)
U5_gg(x0)

We have to consider all (P,Q,R)-chains.

(30) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 1 less node.

(31) TRUE