(0) Obligation:
Clauses:
mul(X1, 0, Z) :- ','(!, eq(Z, 0)).
mul(X, Y, Z) :- ','(p(Y, P), ','(mul(X, P, V), add(X, V, Z))).
add(X, 0, Z) :- ','(!, eq(Z, X)).
add(X, Y, Z) :- ','(p(Y, V), ','(add(X, V, W), p(Z, W))).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
mul(g,g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
mul(X1, 0, Z) :- eq(Z, 0).
mul(X, Y, Z) :- ','(p(Y, P), ','(mul(X, P, V), add(X, V, Z))).
add(X, 0, Z) :- eq(Z, X).
add(X, Y, Z) :- ','(p(Y, V), ','(add(X, V, W), p(Z, W))).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
mul(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mul_in: (b,b,f)
add_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X1, 0, Z) → U1_GGA(X1, Z, eq_in_ag(Z, 0))
MUL_IN_GGA(X1, 0, Z) → EQ_IN_AG(Z, 0)
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
MUL_IN_GGA(X, Y, Z) → P_IN_GA(Y, P)
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → U3_GGA(X, Y, Z, P, mul_in_gga(X, P, V))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_GGA(X, Y, Z, add_in_gga(X, V, Z))
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → ADD_IN_GGA(X, V, Z)
ADD_IN_GGA(X, 0, Z) → U5_GGA(X, Z, eq_in_ag(Z, X))
ADD_IN_GGA(X, 0, Z) → EQ_IN_AG(Z, X)
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
ADD_IN_GGA(X, Y, Z) → P_IN_GA(Y, V)
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → U7_GGA(X, Y, Z, V, add_in_gga(X, V, W))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → U8_GGA(X, Y, Z, p_in_ag(Z, W))
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → P_IN_AG(Z, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3) =
U5_GGA(
x3)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x4)
P_IN_AG(
x1,
x2) =
P_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X1, 0, Z) → U1_GGA(X1, Z, eq_in_ag(Z, 0))
MUL_IN_GGA(X1, 0, Z) → EQ_IN_AG(Z, 0)
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
MUL_IN_GGA(X, Y, Z) → P_IN_GA(Y, P)
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → U3_GGA(X, Y, Z, P, mul_in_gga(X, P, V))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_GGA(X, Y, Z, add_in_gga(X, V, Z))
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → ADD_IN_GGA(X, V, Z)
ADD_IN_GGA(X, 0, Z) → U5_GGA(X, Z, eq_in_ag(Z, X))
ADD_IN_GGA(X, 0, Z) → EQ_IN_AG(Z, X)
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
ADD_IN_GGA(X, Y, Z) → P_IN_GA(Y, V)
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → U7_GGA(X, Y, Z, V, add_in_gga(X, V, W))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → U8_GGA(X, Y, Z, p_in_ag(Z, W))
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → P_IN_AG(Z, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x4)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3) =
U5_GGA(
x3)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x4)
P_IN_AG(
x1,
x2) =
P_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y) → U6_GGA(X, p_in_ga(Y))
U6_GGA(X, p_out_ga(V)) → ADD_IN_GGA(X, V)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(14) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ADD_IN_GGA(x1, x2)) = x1 + x2
POL(U6_GGA(x1, x2)) = x1 + x2
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 2·x1
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y) → U6_GGA(X, p_in_ga(Y))
U6_GGA(X, p_out_ga(V)) → ADD_IN_GGA(X, V)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(16) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
ADD_IN_GGA(
X,
Y) →
U6_GGA(
X,
p_in_ga(
Y)) at position [1] we obtained the following new rules [LPAR04]:
ADD_IN_GGA(y0, 0) → U6_GGA(y0, p_out_ga(0))
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, p_out_ga(V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, p_out_ga(0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(18) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, p_out_ga(V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, p_out_ga(0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(20) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, p_out_ga(V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, p_out_ga(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(22) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U6_GGA(
X,
p_out_ga(
V)) →
ADD_IN_GGA(
X,
V) we obtained the following new rules [LPAR04]:
U6_GGA(z0, p_out_ga(0)) → ADD_IN_GGA(z0, 0)
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(y0, 0) → U6_GGA(y0, p_out_ga(0))
U6_GGA(z0, p_out_ga(0)) → ADD_IN_GGA(z0, 0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(24) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U6_GGA(
z0,
p_out_ga(
0)) evaluates to t =
U6_GGA(
z0,
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU6_GGA(z0, p_out_ga(0)) →
ADD_IN_GGA(
z0,
0)
with rule
U6_GGA(
z0',
p_out_ga(
0)) →
ADD_IN_GGA(
z0',
0) at position [] and matcher [
z0' /
z0]
ADD_IN_GGA(z0, 0) →
U6_GGA(
z0,
p_out_ga(
0))
with rule
ADD_IN_GGA(
y0,
0) →
U6_GGA(
y0,
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(25) FALSE
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(27) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(29) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y) → U2_GGA(X, p_in_ga(Y))
U2_GGA(X, p_out_ga(P)) → MUL_IN_GGA(X, P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(31) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(MUL_IN_GGA(x1, x2)) = x1 + x2
POL(U2_GGA(x1, x2)) = x1 + x2
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 2·x1
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y) → U2_GGA(X, p_in_ga(Y))
U2_GGA(X, p_out_ga(P)) → MUL_IN_GGA(X, P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(33) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
MUL_IN_GGA(
X,
Y) →
U2_GGA(
X,
p_in_ga(
Y)) at position [1] we obtained the following new rules [LPAR04]:
MUL_IN_GGA(y0, 0) → U2_GGA(y0, p_out_ga(0))
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, p_out_ga(P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, p_out_ga(0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, p_out_ga(P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, p_out_ga(0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(37) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, p_out_ga(P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, p_out_ga(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GGA(
X,
p_out_ga(
P)) →
MUL_IN_GGA(
X,
P) we obtained the following new rules [LPAR04]:
U2_GGA(z0, p_out_ga(0)) → MUL_IN_GGA(z0, 0)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(y0, 0) → U2_GGA(y0, p_out_ga(0))
U2_GGA(z0, p_out_ga(0)) → MUL_IN_GGA(z0, 0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_GGA(
z0,
p_out_ga(
0)) evaluates to t =
U2_GGA(
z0,
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU2_GGA(z0, p_out_ga(0)) →
MUL_IN_GGA(
z0,
0)
with rule
U2_GGA(
z0',
p_out_ga(
0)) →
MUL_IN_GGA(
z0',
0) at position [] and matcher [
z0' /
z0]
MUL_IN_GGA(z0, 0) →
U2_GGA(
z0,
p_out_ga(
0))
with rule
MUL_IN_GGA(
y0,
0) →
U2_GGA(
y0,
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(42) FALSE
(43) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
mul_in: (b,b,f)
add_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(44) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
(45) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X1, 0, Z) → U1_GGA(X1, Z, eq_in_ag(Z, 0))
MUL_IN_GGA(X1, 0, Z) → EQ_IN_AG(Z, 0)
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
MUL_IN_GGA(X, Y, Z) → P_IN_GA(Y, P)
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → U3_GGA(X, Y, Z, P, mul_in_gga(X, P, V))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_GGA(X, Y, Z, add_in_gga(X, V, Z))
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → ADD_IN_GGA(X, V, Z)
ADD_IN_GGA(X, 0, Z) → U5_GGA(X, Z, eq_in_ag(Z, X))
ADD_IN_GGA(X, 0, Z) → EQ_IN_AG(Z, X)
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
ADD_IN_GGA(X, Y, Z) → P_IN_GA(Y, V)
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → U7_GGA(X, Y, Z, V, add_in_gga(X, V, W))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → U8_GGA(X, Y, Z, p_in_ag(Z, W))
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → P_IN_AG(Z, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3) =
U5_GGA(
x1,
x3)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x1,
x2,
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
P_IN_AG(
x1,
x2) =
P_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(46) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X1, 0, Z) → U1_GGA(X1, Z, eq_in_ag(Z, 0))
MUL_IN_GGA(X1, 0, Z) → EQ_IN_AG(Z, 0)
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
MUL_IN_GGA(X, Y, Z) → P_IN_GA(Y, P)
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → U3_GGA(X, Y, Z, P, mul_in_gga(X, P, V))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_GGA(X, Y, Z, add_in_gga(X, V, Z))
U3_GGA(X, Y, Z, P, mul_out_gga(X, P, V)) → ADD_IN_GGA(X, V, Z)
ADD_IN_GGA(X, 0, Z) → U5_GGA(X, Z, eq_in_ag(Z, X))
ADD_IN_GGA(X, 0, Z) → EQ_IN_AG(Z, X)
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
ADD_IN_GGA(X, Y, Z) → P_IN_GA(Y, V)
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → U7_GGA(X, Y, Z, V, add_in_gga(X, V, W))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → U8_GGA(X, Y, Z, p_in_ag(Z, W))
U7_GGA(X, Y, Z, V, add_out_gga(X, V, W)) → P_IN_AG(Z, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
U4_GGA(
x1,
x2,
x3,
x4) =
U4_GGA(
x1,
x2,
x4)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U5_GGA(
x1,
x2,
x3) =
U5_GGA(
x1,
x3)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
U7_GGA(
x1,
x2,
x3,
x4,
x5) =
U7_GGA(
x1,
x2,
x5)
U8_GGA(
x1,
x2,
x3,
x4) =
U8_GGA(
x1,
x2,
x4)
P_IN_AG(
x1,
x2) =
P_IN_AG(
x2)
We have to consider all (P,R,Pi)-chains
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.
(48) Complex Obligation (AND)
(49) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(50) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(51) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y, Z) → U6_GGA(X, Y, Z, p_in_ga(Y, V))
U6_GGA(X, Y, Z, p_out_ga(Y, V)) → ADD_IN_GGA(X, V, W)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
ADD_IN_GGA(
x1,
x2,
x3) =
ADD_IN_GGA(
x1,
x2)
U6_GGA(
x1,
x2,
x3,
x4) =
U6_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(52) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(53) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(X, Y) → U6_GGA(X, Y, p_in_ga(Y))
U6_GGA(X, Y, p_out_ga(Y, V)) → ADD_IN_GGA(X, V)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(54) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
ADD_IN_GGA(
X,
Y) →
U6_GGA(
X,
Y,
p_in_ga(
Y)) at position [2] we obtained the following new rules [LPAR04]:
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Y, p_out_ga(Y, V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(56) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Y, p_out_ga(Y, V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(58) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(X, Y, p_out_ga(Y, V)) → ADD_IN_GGA(X, V)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(60) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U6_GGA(
X,
Y,
p_out_ga(
Y,
V)) →
ADD_IN_GGA(
X,
V) we obtained the following new rules [LPAR04]:
U6_GGA(z0, 0, p_out_ga(0, 0)) → ADD_IN_GGA(z0, 0)
U6_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → ADD_IN_GGA(z0, z1)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
U6_GGA(z0, 0, p_out_ga(0, 0)) → ADD_IN_GGA(z0, 0)
U6_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → ADD_IN_GGA(z0, z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(62) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(63) Complex Obligation (AND)
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U6_GGA(z0, 0, p_out_ga(0, 0)) → ADD_IN_GGA(z0, 0)
ADD_IN_GGA(y0, 0) → U6_GGA(y0, 0, p_out_ga(0, 0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(65) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ADD_IN_GGA(
y0,
0) evaluates to t =
ADD_IN_GGA(
y0,
0)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceADD_IN_GGA(y0, 0) →
U6_GGA(
y0,
0,
p_out_ga(
0,
0))
with rule
ADD_IN_GGA(
y0',
0) →
U6_GGA(
y0',
0,
p_out_ga(
0,
0)) at position [] and matcher [
y0' /
y0]
U6_GGA(y0, 0, p_out_ga(0, 0)) →
ADD_IN_GGA(
y0,
0)
with rule
U6_GGA(
z0,
0,
p_out_ga(
0,
0)) →
ADD_IN_GGA(
z0,
0)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(66) FALSE
(67) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
U6_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → ADD_IN_GGA(z0, z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(68) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U6_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → ADD_IN_GGA(z0, z1)
The graph contains the following edges 1 >= 1, 2 > 2, 3 > 2
- ADD_IN_GGA(y0, s(x0)) → U6_GGA(y0, s(x0), p_out_ga(s(x0), x0))
The graph contains the following edges 1 >= 1, 2 >= 2
(69) TRUE
(70) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
The TRS R consists of the following rules:
mul_in_gga(X1, 0, Z) → U1_gga(X1, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gga(X1, Z, eq_out_ag(Z, 0)) → mul_out_gga(X1, 0, Z)
mul_in_gga(X, Y, Z) → U2_gga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gga(X, Y, Z, p_out_ga(Y, P)) → U3_gga(X, Y, Z, P, mul_in_gga(X, P, V))
U3_gga(X, Y, Z, P, mul_out_gga(X, P, V)) → U4_gga(X, Y, Z, add_in_gga(X, V, Z))
add_in_gga(X, 0, Z) → U5_gga(X, Z, eq_in_ag(Z, X))
U5_gga(X, Z, eq_out_ag(Z, X)) → add_out_gga(X, 0, Z)
add_in_gga(X, Y, Z) → U6_gga(X, Y, Z, p_in_ga(Y, V))
U6_gga(X, Y, Z, p_out_ga(Y, V)) → U7_gga(X, Y, Z, V, add_in_gga(X, V, W))
U7_gga(X, Y, Z, V, add_out_gga(X, V, W)) → U8_gga(X, Y, Z, p_in_ag(Z, W))
p_in_ag(0, 0) → p_out_ag(0, 0)
p_in_ag(s(X), X) → p_out_ag(s(X), X)
U8_gga(X, Y, Z, p_out_ag(Z, W)) → add_out_gga(X, Y, Z)
U4_gga(X, Y, Z, add_out_gga(X, V, Z)) → mul_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
mul_in_gga(
x1,
x2,
x3) =
mul_in_gga(
x1,
x2)
0 =
0
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
mul_out_gga(
x1,
x2,
x3) =
mul_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
U4_gga(
x1,
x2,
x3,
x4) =
U4_gga(
x1,
x2,
x4)
add_in_gga(
x1,
x2,
x3) =
add_in_gga(
x1,
x2)
U5_gga(
x1,
x2,
x3) =
U5_gga(
x1,
x3)
add_out_gga(
x1,
x2,
x3) =
add_out_gga(
x1,
x2,
x3)
U6_gga(
x1,
x2,
x3,
x4) =
U6_gga(
x1,
x2,
x4)
U7_gga(
x1,
x2,
x3,
x4,
x5) =
U7_gga(
x1,
x2,
x5)
U8_gga(
x1,
x2,
x3,
x4) =
U8_gga(
x1,
x2,
x4)
p_in_ag(
x1,
x2) =
p_in_ag(
x2)
p_out_ag(
x1,
x2) =
p_out_ag(
x1,
x2)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(71) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(72) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, p_in_ga(Y, P))
U2_GGA(X, Y, Z, p_out_ga(Y, P)) → MUL_IN_GGA(X, P, V)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
MUL_IN_GGA(
x1,
x2,
x3) =
MUL_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(73) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(74) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(X, Y) → U2_GGA(X, Y, p_in_ga(Y))
U2_GGA(X, Y, p_out_ga(Y, P)) → MUL_IN_GGA(X, P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(75) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
MUL_IN_GGA(
X,
Y) →
U2_GGA(
X,
Y,
p_in_ga(
Y)) at position [2] we obtained the following new rules [LPAR04]:
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, Y, p_out_ga(Y, P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(77) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, Y, p_out_ga(Y, P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(79) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(X, Y, p_out_ga(Y, P)) → MUL_IN_GGA(X, P)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(81) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GGA(
X,
Y,
p_out_ga(
Y,
P)) →
MUL_IN_GGA(
X,
P) we obtained the following new rules [LPAR04]:
U2_GGA(z0, 0, p_out_ga(0, 0)) → MUL_IN_GGA(z0, 0)
U2_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → MUL_IN_GGA(z0, z1)
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
U2_GGA(z0, 0, p_out_ga(0, 0)) → MUL_IN_GGA(z0, 0)
U2_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → MUL_IN_GGA(z0, z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(83) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(84) Complex Obligation (AND)
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GGA(z0, 0, p_out_ga(0, 0)) → MUL_IN_GGA(z0, 0)
MUL_IN_GGA(y0, 0) → U2_GGA(y0, 0, p_out_ga(0, 0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(86) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
MUL_IN_GGA(
y0,
0) evaluates to t =
MUL_IN_GGA(
y0,
0)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceMUL_IN_GGA(y0, 0) →
U2_GGA(
y0,
0,
p_out_ga(
0,
0))
with rule
MUL_IN_GGA(
y0',
0) →
U2_GGA(
y0',
0,
p_out_ga(
0,
0)) at position [] and matcher [
y0' /
y0]
U2_GGA(y0, 0, p_out_ga(0, 0)) →
MUL_IN_GGA(
y0,
0)
with rule
U2_GGA(
z0,
0,
p_out_ga(
0,
0)) →
MUL_IN_GGA(
z0,
0)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(87) FALSE
(88) Obligation:
Q DP problem:
The TRS P consists of the following rules:
MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
U2_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → MUL_IN_GGA(z0, z1)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(89) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U2_GGA(z0, s(z1), p_out_ga(s(z1), z1)) → MUL_IN_GGA(z0, z1)
The graph contains the following edges 1 >= 1, 2 > 2, 3 > 2
- MUL_IN_GGA(y0, s(x0)) → U2_GGA(y0, s(x0), p_out_ga(s(x0), x0))
The graph contains the following edges 1 >= 1, 2 >= 2
(90) TRUE