(0) Obligation:
Clauses:
goal :- ','(lte(X, s(s(s(s(0))))), even(X)).
lte(0, Y).
lte(X, s(Y)) :- ','(no(zero(X)), ','(p(X, P), lte(P, Y))).
even(0).
even(s(s(X))) :- even(X).
p(0, 0).
p(s(X), X).
zero(0).
no(X) :- ','(X, ','(!, failure(a))).
no(X1).
failure(b).
Queries:
goal().
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
even5(0).
even5(s(s(T3))) :- even5(T3).
lte4(0).
goal1 :- lte4(X2).
goal1 :- lte4(0).
goal1 :- ','(lte4(s(s(T3))), even5(T3)).
Queries:
goal1().
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
even5_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal1_in_ → U2_(lte4_in_a(X2))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X2)) → goal1_out_
goal1_in_ → U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_ → U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_
The argument filtering Pi contains the following mapping:
goal1_in_ =
goal1_in_
U2_(
x1) =
U2_(
x1)
lte4_in_a(
x1) =
lte4_in_a
lte4_out_a(
x1) =
lte4_out_a(
x1)
goal1_out_ =
goal1_out_
U3_(
x1) =
U3_(
x1)
lte4_in_g(
x1) =
lte4_in_g(
x1)
0 =
0
lte4_out_g(
x1) =
lte4_out_g
U4_(
x1) =
U4_(
x1)
s(
x1) =
s(
x1)
U5_(
x1) =
U5_(
x1)
even5_in_g(
x1) =
even5_in_g(
x1)
even5_out_g(
x1) =
even5_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal1_in_ → U2_(lte4_in_a(X2))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X2)) → goal1_out_
goal1_in_ → U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_ → U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_
The argument filtering Pi contains the following mapping:
goal1_in_ =
goal1_in_
U2_(
x1) =
U2_(
x1)
lte4_in_a(
x1) =
lte4_in_a
lte4_out_a(
x1) =
lte4_out_a(
x1)
goal1_out_ =
goal1_out_
U3_(
x1) =
U3_(
x1)
lte4_in_g(
x1) =
lte4_in_g(
x1)
0 =
0
lte4_out_g(
x1) =
lte4_out_g
U4_(
x1) =
U4_(
x1)
s(
x1) =
s(
x1)
U5_(
x1) =
U5_(
x1)
even5_in_g(
x1) =
even5_in_g(
x1)
even5_out_g(
x1) =
even5_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_ → U2_1(lte4_in_a(X2))
GOAL1_IN_ → LTE4_IN_A(X2)
GOAL1_IN_ → U3_1(lte4_in_g(0))
GOAL1_IN_ → LTE4_IN_G(0)
GOAL1_IN_ → U4_1(lte4_in_a(s(s(T3))))
GOAL1_IN_ → LTE4_IN_A(s(s(T3)))
U4_1(lte4_out_a(s(s(T3)))) → U5_1(even5_in_g(T3))
U4_1(lte4_out_a(s(s(T3)))) → EVEN5_IN_G(T3)
EVEN5_IN_G(s(s(T3))) → U1_G(T3, even5_in_g(T3))
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
The TRS R consists of the following rules:
goal1_in_ → U2_(lte4_in_a(X2))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X2)) → goal1_out_
goal1_in_ → U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_ → U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_
The argument filtering Pi contains the following mapping:
goal1_in_ =
goal1_in_
U2_(
x1) =
U2_(
x1)
lte4_in_a(
x1) =
lte4_in_a
lte4_out_a(
x1) =
lte4_out_a(
x1)
goal1_out_ =
goal1_out_
U3_(
x1) =
U3_(
x1)
lte4_in_g(
x1) =
lte4_in_g(
x1)
0 =
0
lte4_out_g(
x1) =
lte4_out_g
U4_(
x1) =
U4_(
x1)
s(
x1) =
s(
x1)
U5_(
x1) =
U5_(
x1)
even5_in_g(
x1) =
even5_in_g(
x1)
even5_out_g(
x1) =
even5_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
GOAL1_IN_ =
GOAL1_IN_
U2_1(
x1) =
U2_1(
x1)
LTE4_IN_A(
x1) =
LTE4_IN_A
U3_1(
x1) =
U3_1(
x1)
LTE4_IN_G(
x1) =
LTE4_IN_G(
x1)
U4_1(
x1) =
U4_1(
x1)
U5_1(
x1) =
U5_1(
x1)
EVEN5_IN_G(
x1) =
EVEN5_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_ → U2_1(lte4_in_a(X2))
GOAL1_IN_ → LTE4_IN_A(X2)
GOAL1_IN_ → U3_1(lte4_in_g(0))
GOAL1_IN_ → LTE4_IN_G(0)
GOAL1_IN_ → U4_1(lte4_in_a(s(s(T3))))
GOAL1_IN_ → LTE4_IN_A(s(s(T3)))
U4_1(lte4_out_a(s(s(T3)))) → U5_1(even5_in_g(T3))
U4_1(lte4_out_a(s(s(T3)))) → EVEN5_IN_G(T3)
EVEN5_IN_G(s(s(T3))) → U1_G(T3, even5_in_g(T3))
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
The TRS R consists of the following rules:
goal1_in_ → U2_(lte4_in_a(X2))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X2)) → goal1_out_
goal1_in_ → U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_ → U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_
The argument filtering Pi contains the following mapping:
goal1_in_ =
goal1_in_
U2_(
x1) =
U2_(
x1)
lte4_in_a(
x1) =
lte4_in_a
lte4_out_a(
x1) =
lte4_out_a(
x1)
goal1_out_ =
goal1_out_
U3_(
x1) =
U3_(
x1)
lte4_in_g(
x1) =
lte4_in_g(
x1)
0 =
0
lte4_out_g(
x1) =
lte4_out_g
U4_(
x1) =
U4_(
x1)
s(
x1) =
s(
x1)
U5_(
x1) =
U5_(
x1)
even5_in_g(
x1) =
even5_in_g(
x1)
even5_out_g(
x1) =
even5_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
GOAL1_IN_ =
GOAL1_IN_
U2_1(
x1) =
U2_1(
x1)
LTE4_IN_A(
x1) =
LTE4_IN_A
U3_1(
x1) =
U3_1(
x1)
LTE4_IN_G(
x1) =
LTE4_IN_G(
x1)
U4_1(
x1) =
U4_1(
x1)
U5_1(
x1) =
U5_1(
x1)
EVEN5_IN_G(
x1) =
EVEN5_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 9 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
The TRS R consists of the following rules:
goal1_in_ → U2_(lte4_in_a(X2))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X2)) → goal1_out_
goal1_in_ → U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_ → U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_
The argument filtering Pi contains the following mapping:
goal1_in_ =
goal1_in_
U2_(
x1) =
U2_(
x1)
lte4_in_a(
x1) =
lte4_in_a
lte4_out_a(
x1) =
lte4_out_a(
x1)
goal1_out_ =
goal1_out_
U3_(
x1) =
U3_(
x1)
lte4_in_g(
x1) =
lte4_in_g(
x1)
0 =
0
lte4_out_g(
x1) =
lte4_out_g
U4_(
x1) =
U4_(
x1)
s(
x1) =
s(
x1)
U5_(
x1) =
U5_(
x1)
even5_in_g(
x1) =
even5_in_g(
x1)
even5_out_g(
x1) =
even5_out_g
U1_g(
x1,
x2) =
U1_g(
x2)
EVEN5_IN_G(
x1) =
EVEN5_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
The graph contains the following edges 1 > 1
(14) TRUE