(0) Obligation:

Clauses:

goal :- ','(lte(X, s(s(s(s(0))))), even(X)).
lte(0, Y) :- !.
lte(X, s(Y)) :- ','(p(X, P), lte(P, Y)).
even(0).
even(s(s(X))) :- even(X).
p(0, 0).
p(s(X), X).

Queries:

goal().

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

even5(0).
even5(s(s(T3))) :- even5(T3).
lte4(0).
goal1 :- lte4(X1).
goal1 :- lte4(0).
goal1 :- ','(lte4(s(s(T3))), even5(T3)).

Queries:

goal1().

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
even5_in: (b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

goal1_in_U2_(lte4_in_a(X1))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X1)) → goal1_out_
goal1_in_U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_

The argument filtering Pi contains the following mapping:
goal1_in_  =  goal1_in_
U2_(x1)  =  U2_(x1)
lte4_in_a(x1)  =  lte4_in_a
lte4_out_a(x1)  =  lte4_out_a(x1)
goal1_out_  =  goal1_out_
U3_(x1)  =  U3_(x1)
lte4_in_g(x1)  =  lte4_in_g(x1)
0  =  0
lte4_out_g(x1)  =  lte4_out_g(x1)
U4_(x1)  =  U4_(x1)
s(x1)  =  s(x1)
U5_(x1)  =  U5_(x1)
even5_in_g(x1)  =  even5_in_g(x1)
even5_out_g(x1)  =  even5_out_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

goal1_in_U2_(lte4_in_a(X1))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X1)) → goal1_out_
goal1_in_U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_

The argument filtering Pi contains the following mapping:
goal1_in_  =  goal1_in_
U2_(x1)  =  U2_(x1)
lte4_in_a(x1)  =  lte4_in_a
lte4_out_a(x1)  =  lte4_out_a(x1)
goal1_out_  =  goal1_out_
U3_(x1)  =  U3_(x1)
lte4_in_g(x1)  =  lte4_in_g(x1)
0  =  0
lte4_out_g(x1)  =  lte4_out_g(x1)
U4_(x1)  =  U4_(x1)
s(x1)  =  s(x1)
U5_(x1)  =  U5_(x1)
even5_in_g(x1)  =  even5_in_g(x1)
even5_out_g(x1)  =  even5_out_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_U2_1(lte4_in_a(X1))
GOAL1_IN_LTE4_IN_A(X1)
GOAL1_IN_U3_1(lte4_in_g(0))
GOAL1_IN_LTE4_IN_G(0)
GOAL1_IN_U4_1(lte4_in_a(s(s(T3))))
GOAL1_IN_LTE4_IN_A(s(s(T3)))
U4_1(lte4_out_a(s(s(T3)))) → U5_1(even5_in_g(T3))
U4_1(lte4_out_a(s(s(T3)))) → EVEN5_IN_G(T3)
EVEN5_IN_G(s(s(T3))) → U1_G(T3, even5_in_g(T3))
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)

The TRS R consists of the following rules:

goal1_in_U2_(lte4_in_a(X1))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X1)) → goal1_out_
goal1_in_U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_

The argument filtering Pi contains the following mapping:
goal1_in_  =  goal1_in_
U2_(x1)  =  U2_(x1)
lte4_in_a(x1)  =  lte4_in_a
lte4_out_a(x1)  =  lte4_out_a(x1)
goal1_out_  =  goal1_out_
U3_(x1)  =  U3_(x1)
lte4_in_g(x1)  =  lte4_in_g(x1)
0  =  0
lte4_out_g(x1)  =  lte4_out_g(x1)
U4_(x1)  =  U4_(x1)
s(x1)  =  s(x1)
U5_(x1)  =  U5_(x1)
even5_in_g(x1)  =  even5_in_g(x1)
even5_out_g(x1)  =  even5_out_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
GOAL1_IN_  =  GOAL1_IN_
U2_1(x1)  =  U2_1(x1)
LTE4_IN_A(x1)  =  LTE4_IN_A
U3_1(x1)  =  U3_1(x1)
LTE4_IN_G(x1)  =  LTE4_IN_G(x1)
U4_1(x1)  =  U4_1(x1)
U5_1(x1)  =  U5_1(x1)
EVEN5_IN_G(x1)  =  EVEN5_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_U2_1(lte4_in_a(X1))
GOAL1_IN_LTE4_IN_A(X1)
GOAL1_IN_U3_1(lte4_in_g(0))
GOAL1_IN_LTE4_IN_G(0)
GOAL1_IN_U4_1(lte4_in_a(s(s(T3))))
GOAL1_IN_LTE4_IN_A(s(s(T3)))
U4_1(lte4_out_a(s(s(T3)))) → U5_1(even5_in_g(T3))
U4_1(lte4_out_a(s(s(T3)))) → EVEN5_IN_G(T3)
EVEN5_IN_G(s(s(T3))) → U1_G(T3, even5_in_g(T3))
EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)

The TRS R consists of the following rules:

goal1_in_U2_(lte4_in_a(X1))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X1)) → goal1_out_
goal1_in_U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_

The argument filtering Pi contains the following mapping:
goal1_in_  =  goal1_in_
U2_(x1)  =  U2_(x1)
lte4_in_a(x1)  =  lte4_in_a
lte4_out_a(x1)  =  lte4_out_a(x1)
goal1_out_  =  goal1_out_
U3_(x1)  =  U3_(x1)
lte4_in_g(x1)  =  lte4_in_g(x1)
0  =  0
lte4_out_g(x1)  =  lte4_out_g(x1)
U4_(x1)  =  U4_(x1)
s(x1)  =  s(x1)
U5_(x1)  =  U5_(x1)
even5_in_g(x1)  =  even5_in_g(x1)
even5_out_g(x1)  =  even5_out_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
GOAL1_IN_  =  GOAL1_IN_
U2_1(x1)  =  U2_1(x1)
LTE4_IN_A(x1)  =  LTE4_IN_A
U3_1(x1)  =  U3_1(x1)
LTE4_IN_G(x1)  =  LTE4_IN_G(x1)
U4_1(x1)  =  U4_1(x1)
U5_1(x1)  =  U5_1(x1)
EVEN5_IN_G(x1)  =  EVEN5_IN_G(x1)
U1_G(x1, x2)  =  U1_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 9 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)

The TRS R consists of the following rules:

goal1_in_U2_(lte4_in_a(X1))
lte4_in_a(0) → lte4_out_a(0)
U2_(lte4_out_a(X1)) → goal1_out_
goal1_in_U3_(lte4_in_g(0))
lte4_in_g(0) → lte4_out_g(0)
U3_(lte4_out_g(0)) → goal1_out_
goal1_in_U4_(lte4_in_a(s(s(T3))))
U4_(lte4_out_a(s(s(T3)))) → U5_(even5_in_g(T3))
even5_in_g(0) → even5_out_g(0)
even5_in_g(s(s(T3))) → U1_g(T3, even5_in_g(T3))
U1_g(T3, even5_out_g(T3)) → even5_out_g(s(s(T3)))
U5_(even5_out_g(T3)) → goal1_out_

The argument filtering Pi contains the following mapping:
goal1_in_  =  goal1_in_
U2_(x1)  =  U2_(x1)
lte4_in_a(x1)  =  lte4_in_a
lte4_out_a(x1)  =  lte4_out_a(x1)
goal1_out_  =  goal1_out_
U3_(x1)  =  U3_(x1)
lte4_in_g(x1)  =  lte4_in_g(x1)
0  =  0
lte4_out_g(x1)  =  lte4_out_g(x1)
U4_(x1)  =  U4_(x1)
s(x1)  =  s(x1)
U5_(x1)  =  U5_(x1)
even5_in_g(x1)  =  even5_in_g(x1)
even5_out_g(x1)  =  even5_out_g(x1)
U1_g(x1, x2)  =  U1_g(x1, x2)
EVEN5_IN_G(x1)  =  EVEN5_IN_G(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • EVEN5_IN_G(s(s(T3))) → EVEN5_IN_G(T3)
    The graph contains the following edges 1 > 1

(14) TRUE