(0) Obligation:

Clauses:

lessleaves(nil, cons(X1, X2)).
lessleaves(cons(U, V), cons(W, Z)) :- ','(app(U, V, U1), ','(app(W, Z, W1), lessleaves(U1, W1))).
app(nil, Y, Z) :- ','(!, eq(Y, Z)).
app(X, Y, cons(U, Z)) :- ','(head(X, U), ','(tail(X, V), app(V, Y, Z))).
head([], X3).
head(.(X, X4), X).
tail([], []).
tail(.(X5, X), X).
eq(X, X).

Queries:

lessleaves(g,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

app33(T47, cons(X180, X161)) :- app33(T47, X161).
app15([], T38, cons(X105, X92)) :- app33(T38, X92).
app15(.(T67, T68), T38, cons(T67, X92)) :- app15(T68, T38, X92).
app81(T134, cons(X412, X393)) :- app81(T134, X393).
app63([], T124, cons(X337, X324)) :- app81(T124, X324).
app63(.(T159, T161), T162, cons(T159, X324)) :- app63(T161, T162, X324).
p62(T96, T97, X271, T99) :- app63(T96, T97, X271).
p62(T96, T97, cons(T192, T193), cons(T190, T191)) :- ','(appc63(T96, T97, cons(T192, T193)), app63(T190, T191, X502)).
p62(T96, T97, cons(T196, T197), cons(T190, T191)) :- ','(appc63(T96, T97, cons(T196, T197)), ','(appc63(T190, T191, T195), p62(T196, T197, X503, T195))).
lessleaves1(cons(nil, T22), cons(T13, T14)) :- app15(T13, T14, X25).
lessleaves1(cons(nil, cons(T92, T93)), cons(T13, T14)) :- ','(appc15(T13, T14, cons(T96, T97)), app15(T92, T93, X270)).
lessleaves1(cons(nil, cons(T92, T93)), cons(T13, T14)) :- ','(appc15(T13, T14, cons(T96, T97)), ','(appc15(T92, T93, T99), p62(T96, T97, X271, T99))).
lessleaves1(cons([], T206), cons(T13, T14)) :- app33(T206, X539).
lessleaves1(cons([], T206), cons(T13, T14)) :- ','(appc33(T206, T212), p62(T13, T14, X25, cons(X552, T212))).
lessleaves1(cons(.(T227, T228), T206), cons(T13, T14)) :- app15(T228, T206, X539).
lessleaves1(cons(.(T227, T228), T206), cons(T13, T14)) :- ','(appc15(T228, T206, T230), p62(T13, T14, X25, cons(T227, T230))).

Clauses:

appc33(T47, cons(X180, X161)) :- appc33(T47, X161).
appc15(nil, T31, T31).
appc15([], T38, cons(X105, X92)) :- appc33(T38, X92).
appc15(.(T67, T68), T38, cons(T67, X92)) :- appc15(T68, T38, X92).
appc81(T134, cons(X412, X393)) :- appc81(T134, X393).
appc63(nil, T111, T111).
appc63([], T124, cons(X337, X324)) :- appc81(T124, X324).
appc63(.(T159, T161), T162, cons(T159, X324)) :- appc63(T161, T162, X324).
qc62(T96, T97, cons(T176, T177), nil) :- appc63(T96, T97, cons(T176, T177)).
qc62(T96, T97, cons(T196, T197), cons(T190, T191)) :- ','(appc63(T96, T97, cons(T196, T197)), ','(appc63(T190, T191, T195), qc62(T196, T197, X503, T195))).

Afs:

lessleaves1(x1, x2)  =  lessleaves1(x1, x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
lessleaves1_in: (b,b)
app15_in: (b,b,f)
app33_in: (b,f)
appc15_in: (b,b,f)
appc33_in: (b,f)
p62_in: (f,f,f,f) (b,b,f,f)
app63_in: (f,f,f) (b,b,f)
app81_in: (f,f) (b,f)
appc63_in: (f,f,f) (b,b,f)
appc81_in: (f,f) (b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

LESSLEAVES1_IN_GG(cons(nil, T22), cons(T13, T14)) → U13_GG(T22, T13, T14, app15_in_gga(T13, T14, X25))
LESSLEAVES1_IN_GG(cons(nil, T22), cons(T13, T14)) → APP15_IN_GGA(T13, T14, X25)
APP15_IN_GGA([], T38, cons(X105, X92)) → U2_GGA(T38, X105, X92, app33_in_ga(T38, X92))
APP15_IN_GGA([], T38, cons(X105, X92)) → APP33_IN_GA(T38, X92)
APP33_IN_GA(T47, cons(X180, X161)) → U1_GA(T47, X180, X161, app33_in_ga(T47, X161))
APP33_IN_GA(T47, cons(X180, X161)) → APP33_IN_GA(T47, X161)
APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → U3_GGA(T67, T68, T38, X92, app15_in_gga(T68, T38, X92))
APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → APP15_IN_GGA(T68, T38, X92)
LESSLEAVES1_IN_GG(cons(nil, cons(T92, T93)), cons(T13, T14)) → U14_GG(T92, T93, T13, T14, appc15_in_gga(T13, T14, cons(T96, T97)))
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → U15_GG(T92, T93, T13, T14, app15_in_gga(T92, T93, X270))
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → APP15_IN_GGA(T92, T93, X270)
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → U16_GG(T92, T93, T13, T14, T96, T97, appc15_in_gga(T92, T93, T99))
U16_GG(T92, T93, T13, T14, T96, T97, appc15_out_gga(T92, T93, T99)) → U17_GG(T92, T93, T13, T14, p62_in_aaaa(T96, T97, X271, T99))
U16_GG(T92, T93, T13, T14, T96, T97, appc15_out_gga(T92, T93, T99)) → P62_IN_AAAA(T96, T97, X271, T99)
P62_IN_AAAA(T96, T97, X271, T99) → U7_AAAA(T96, T97, X271, T99, app63_in_aaa(T96, T97, X271))
P62_IN_AAAA(T96, T97, X271, T99) → APP63_IN_AAA(T96, T97, X271)
APP63_IN_AAA([], T124, cons(X337, X324)) → U5_AAA(T124, X337, X324, app81_in_aa(T124, X324))
APP63_IN_AAA([], T124, cons(X337, X324)) → APP81_IN_AA(T124, X324)
APP81_IN_AA(T134, cons(X412, X393)) → U4_AA(T134, X412, X393, app81_in_aa(T134, X393))
APP81_IN_AA(T134, cons(X412, X393)) → APP81_IN_AA(T134, X393)
APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → U6_AAA(T159, T161, T162, X324, app63_in_aaa(T161, T162, X324))
APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_AAA(T161, T162, X324)
P62_IN_AAAA(T96, T97, cons(T192, T193), cons(T190, T191)) → U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_in_aaa(T96, T97, cons(T192, T193)))
U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_out_aaa(T96, T97, cons(T192, T193))) → U9_AAAA(T96, T97, T192, T193, T190, T191, app63_in_aaa(T190, T191, X502))
U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_out_aaa(T96, T97, cons(T192, T193))) → APP63_IN_AAA(T190, T191, X502)
P62_IN_AAAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T96, T97, cons(T196, T197)))
U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T96, T97, cons(T196, T197))) → U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → U12_AAAA(T96, T97, T196, T197, T190, T191, p62_in_aaaa(T196, T197, X503, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → U18_GG(T206, T13, T14, app33_in_ga(T206, X539))
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → APP33_IN_GA(T206, X539)
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → U19_GG(T206, T13, T14, appc33_in_ga(T206, T212))
U19_GG(T206, T13, T14, appc33_out_ga(T206, T212)) → U20_GG(T206, T13, T14, p62_in_ggaa(T13, T14, X25, cons(X552, T212)))
U19_GG(T206, T13, T14, appc33_out_ga(T206, T212)) → P62_IN_GGAA(T13, T14, X25, cons(X552, T212))
P62_IN_GGAA(T96, T97, X271, T99) → U7_GGAA(T96, T97, X271, T99, app63_in_gga(T96, T97, X271))
P62_IN_GGAA(T96, T97, X271, T99) → APP63_IN_GGA(T96, T97, X271)
APP63_IN_GGA([], T124, cons(X337, X324)) → U5_GGA(T124, X337, X324, app81_in_ga(T124, X324))
APP63_IN_GGA([], T124, cons(X337, X324)) → APP81_IN_GA(T124, X324)
APP81_IN_GA(T134, cons(X412, X393)) → U4_GA(T134, X412, X393, app81_in_ga(T134, X393))
APP81_IN_GA(T134, cons(X412, X393)) → APP81_IN_GA(T134, X393)
APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → U6_GGA(T159, T161, T162, X324, app63_in_gga(T161, T162, X324))
APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_GGA(T161, T162, X324)
P62_IN_GGAA(T96, T97, cons(T192, T193), cons(T190, T191)) → U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_in_gga(T96, T97, cons(T192, T193)))
U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_out_gga(T96, T97, cons(T192, T193))) → U9_GGAA(T96, T97, T192, T193, T190, T191, app63_in_aaa(T190, T191, X502))
U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_out_gga(T96, T97, cons(T192, T193))) → APP63_IN_AAA(T190, T191, X502)
P62_IN_GGAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_GGAA(T96, T97, T196, T197, T190, T191, appc63_in_gga(T96, T97, cons(T196, T197)))
U10_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_gga(T96, T97, cons(T196, T197))) → U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → U12_GGAA(T96, T97, T196, T197, T190, T191, p62_in_aaaa(T196, T197, X503, T195))
U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → U21_GG(T227, T228, T206, T13, T14, app15_in_gga(T228, T206, X539))
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → APP15_IN_GGA(T228, T206, X539)
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → U22_GG(T227, T228, T206, T13, T14, appc15_in_gga(T228, T206, T230))
U22_GG(T227, T228, T206, T13, T14, appc15_out_gga(T228, T206, T230)) → U23_GG(T227, T228, T206, T13, T14, p62_in_ggaa(T13, T14, X25, cons(T227, T230)))
U22_GG(T227, T228, T206, T13, T14, appc15_out_gga(T228, T206, T230)) → P62_IN_GGAA(T13, T14, X25, cons(T227, T230))

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
app15_in_gga(x1, x2, x3)  =  app15_in_gga(x1, x2)
[]  =  []
app33_in_ga(x1, x2)  =  app33_in_ga(x1)
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
p62_in_aaaa(x1, x2, x3, x4)  =  p62_in_aaaa
app63_in_aaa(x1, x2, x3)  =  app63_in_aaa
app81_in_aa(x1, x2)  =  app81_in_aa
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
p62_in_ggaa(x1, x2, x3, x4)  =  p62_in_ggaa(x1, x2)
app63_in_gga(x1, x2, x3)  =  app63_in_gga(x1, x2)
app81_in_ga(x1, x2)  =  app81_in_ga(x1)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
LESSLEAVES1_IN_GG(x1, x2)  =  LESSLEAVES1_IN_GG(x1, x2)
U13_GG(x1, x2, x3, x4)  =  U13_GG(x1, x2, x3, x4)
APP15_IN_GGA(x1, x2, x3)  =  APP15_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x4)
APP33_IN_GA(x1, x2)  =  APP33_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U14_GG(x1, x2, x3, x4, x5)  =  U14_GG(x1, x2, x3, x4, x5)
U15_GG(x1, x2, x3, x4, x5)  =  U15_GG(x1, x2, x3, x4, x5)
U16_GG(x1, x2, x3, x4, x5, x6, x7)  =  U16_GG(x1, x2, x3, x4, x7)
U17_GG(x1, x2, x3, x4, x5)  =  U17_GG(x1, x2, x3, x4, x5)
P62_IN_AAAA(x1, x2, x3, x4)  =  P62_IN_AAAA
U7_AAAA(x1, x2, x3, x4, x5)  =  U7_AAAA(x5)
APP63_IN_AAA(x1, x2, x3)  =  APP63_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
APP81_IN_AA(x1, x2)  =  APP81_IN_AA
U4_AA(x1, x2, x3, x4)  =  U4_AA(x4)
U6_AAA(x1, x2, x3, x4, x5)  =  U6_AAA(x5)
U8_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_AAAA(x7)
U9_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_AAAA(x7)
U10_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_AAAA(x7)
U11_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_AAAA(x7)
U12_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U12_AAAA(x7)
U18_GG(x1, x2, x3, x4)  =  U18_GG(x1, x2, x3, x4)
U19_GG(x1, x2, x3, x4)  =  U19_GG(x1, x2, x3, x4)
U20_GG(x1, x2, x3, x4)  =  U20_GG(x1, x2, x3, x4)
P62_IN_GGAA(x1, x2, x3, x4)  =  P62_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
APP63_IN_GGA(x1, x2, x3)  =  APP63_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x4)
APP81_IN_GA(x1, x2)  =  APP81_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U6_GGA(x1, x2, x3, x4, x5)  =  U6_GGA(x1, x2, x3, x5)
U8_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_GGAA(x1, x2, x7)
U9_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_GGAA(x1, x2, x7)
U10_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_GGAA(x1, x2, x7)
U11_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_GGAA(x1, x2, x7)
U12_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U12_GGAA(x1, x2, x7)
U21_GG(x1, x2, x3, x4, x5, x6)  =  U21_GG(x1, x2, x3, x4, x5, x6)
U22_GG(x1, x2, x3, x4, x5, x6)  =  U22_GG(x1, x2, x3, x4, x5, x6)
U23_GG(x1, x2, x3, x4, x5, x6)  =  U23_GG(x1, x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESSLEAVES1_IN_GG(cons(nil, T22), cons(T13, T14)) → U13_GG(T22, T13, T14, app15_in_gga(T13, T14, X25))
LESSLEAVES1_IN_GG(cons(nil, T22), cons(T13, T14)) → APP15_IN_GGA(T13, T14, X25)
APP15_IN_GGA([], T38, cons(X105, X92)) → U2_GGA(T38, X105, X92, app33_in_ga(T38, X92))
APP15_IN_GGA([], T38, cons(X105, X92)) → APP33_IN_GA(T38, X92)
APP33_IN_GA(T47, cons(X180, X161)) → U1_GA(T47, X180, X161, app33_in_ga(T47, X161))
APP33_IN_GA(T47, cons(X180, X161)) → APP33_IN_GA(T47, X161)
APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → U3_GGA(T67, T68, T38, X92, app15_in_gga(T68, T38, X92))
APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → APP15_IN_GGA(T68, T38, X92)
LESSLEAVES1_IN_GG(cons(nil, cons(T92, T93)), cons(T13, T14)) → U14_GG(T92, T93, T13, T14, appc15_in_gga(T13, T14, cons(T96, T97)))
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → U15_GG(T92, T93, T13, T14, app15_in_gga(T92, T93, X270))
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → APP15_IN_GGA(T92, T93, X270)
U14_GG(T92, T93, T13, T14, appc15_out_gga(T13, T14, cons(T96, T97))) → U16_GG(T92, T93, T13, T14, T96, T97, appc15_in_gga(T92, T93, T99))
U16_GG(T92, T93, T13, T14, T96, T97, appc15_out_gga(T92, T93, T99)) → U17_GG(T92, T93, T13, T14, p62_in_aaaa(T96, T97, X271, T99))
U16_GG(T92, T93, T13, T14, T96, T97, appc15_out_gga(T92, T93, T99)) → P62_IN_AAAA(T96, T97, X271, T99)
P62_IN_AAAA(T96, T97, X271, T99) → U7_AAAA(T96, T97, X271, T99, app63_in_aaa(T96, T97, X271))
P62_IN_AAAA(T96, T97, X271, T99) → APP63_IN_AAA(T96, T97, X271)
APP63_IN_AAA([], T124, cons(X337, X324)) → U5_AAA(T124, X337, X324, app81_in_aa(T124, X324))
APP63_IN_AAA([], T124, cons(X337, X324)) → APP81_IN_AA(T124, X324)
APP81_IN_AA(T134, cons(X412, X393)) → U4_AA(T134, X412, X393, app81_in_aa(T134, X393))
APP81_IN_AA(T134, cons(X412, X393)) → APP81_IN_AA(T134, X393)
APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → U6_AAA(T159, T161, T162, X324, app63_in_aaa(T161, T162, X324))
APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_AAA(T161, T162, X324)
P62_IN_AAAA(T96, T97, cons(T192, T193), cons(T190, T191)) → U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_in_aaa(T96, T97, cons(T192, T193)))
U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_out_aaa(T96, T97, cons(T192, T193))) → U9_AAAA(T96, T97, T192, T193, T190, T191, app63_in_aaa(T190, T191, X502))
U8_AAAA(T96, T97, T192, T193, T190, T191, appc63_out_aaa(T96, T97, cons(T192, T193))) → APP63_IN_AAA(T190, T191, X502)
P62_IN_AAAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T96, T97, cons(T196, T197)))
U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T96, T97, cons(T196, T197))) → U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → U12_AAAA(T96, T97, T196, T197, T190, T191, p62_in_aaaa(T196, T197, X503, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → U18_GG(T206, T13, T14, app33_in_ga(T206, X539))
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → APP33_IN_GA(T206, X539)
LESSLEAVES1_IN_GG(cons([], T206), cons(T13, T14)) → U19_GG(T206, T13, T14, appc33_in_ga(T206, T212))
U19_GG(T206, T13, T14, appc33_out_ga(T206, T212)) → U20_GG(T206, T13, T14, p62_in_ggaa(T13, T14, X25, cons(X552, T212)))
U19_GG(T206, T13, T14, appc33_out_ga(T206, T212)) → P62_IN_GGAA(T13, T14, X25, cons(X552, T212))
P62_IN_GGAA(T96, T97, X271, T99) → U7_GGAA(T96, T97, X271, T99, app63_in_gga(T96, T97, X271))
P62_IN_GGAA(T96, T97, X271, T99) → APP63_IN_GGA(T96, T97, X271)
APP63_IN_GGA([], T124, cons(X337, X324)) → U5_GGA(T124, X337, X324, app81_in_ga(T124, X324))
APP63_IN_GGA([], T124, cons(X337, X324)) → APP81_IN_GA(T124, X324)
APP81_IN_GA(T134, cons(X412, X393)) → U4_GA(T134, X412, X393, app81_in_ga(T134, X393))
APP81_IN_GA(T134, cons(X412, X393)) → APP81_IN_GA(T134, X393)
APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → U6_GGA(T159, T161, T162, X324, app63_in_gga(T161, T162, X324))
APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_GGA(T161, T162, X324)
P62_IN_GGAA(T96, T97, cons(T192, T193), cons(T190, T191)) → U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_in_gga(T96, T97, cons(T192, T193)))
U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_out_gga(T96, T97, cons(T192, T193))) → U9_GGAA(T96, T97, T192, T193, T190, T191, app63_in_aaa(T190, T191, X502))
U8_GGAA(T96, T97, T192, T193, T190, T191, appc63_out_gga(T96, T97, cons(T192, T193))) → APP63_IN_AAA(T190, T191, X502)
P62_IN_GGAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_GGAA(T96, T97, T196, T197, T190, T191, appc63_in_gga(T96, T97, cons(T196, T197)))
U10_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_gga(T96, T97, cons(T196, T197))) → U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → U12_GGAA(T96, T97, T196, T197, T190, T191, p62_in_aaaa(T196, T197, X503, T195))
U11_GGAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → U21_GG(T227, T228, T206, T13, T14, app15_in_gga(T228, T206, X539))
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → APP15_IN_GGA(T228, T206, X539)
LESSLEAVES1_IN_GG(cons(.(T227, T228), T206), cons(T13, T14)) → U22_GG(T227, T228, T206, T13, T14, appc15_in_gga(T228, T206, T230))
U22_GG(T227, T228, T206, T13, T14, appc15_out_gga(T228, T206, T230)) → U23_GG(T227, T228, T206, T13, T14, p62_in_ggaa(T13, T14, X25, cons(T227, T230)))
U22_GG(T227, T228, T206, T13, T14, appc15_out_gga(T228, T206, T230)) → P62_IN_GGAA(T13, T14, X25, cons(T227, T230))

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
app15_in_gga(x1, x2, x3)  =  app15_in_gga(x1, x2)
[]  =  []
app33_in_ga(x1, x2)  =  app33_in_ga(x1)
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
p62_in_aaaa(x1, x2, x3, x4)  =  p62_in_aaaa
app63_in_aaa(x1, x2, x3)  =  app63_in_aaa
app81_in_aa(x1, x2)  =  app81_in_aa
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
p62_in_ggaa(x1, x2, x3, x4)  =  p62_in_ggaa(x1, x2)
app63_in_gga(x1, x2, x3)  =  app63_in_gga(x1, x2)
app81_in_ga(x1, x2)  =  app81_in_ga(x1)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
LESSLEAVES1_IN_GG(x1, x2)  =  LESSLEAVES1_IN_GG(x1, x2)
U13_GG(x1, x2, x3, x4)  =  U13_GG(x1, x2, x3, x4)
APP15_IN_GGA(x1, x2, x3)  =  APP15_IN_GGA(x1, x2)
U2_GGA(x1, x2, x3, x4)  =  U2_GGA(x1, x4)
APP33_IN_GA(x1, x2)  =  APP33_IN_GA(x1)
U1_GA(x1, x2, x3, x4)  =  U1_GA(x1, x4)
U3_GGA(x1, x2, x3, x4, x5)  =  U3_GGA(x1, x2, x3, x5)
U14_GG(x1, x2, x3, x4, x5)  =  U14_GG(x1, x2, x3, x4, x5)
U15_GG(x1, x2, x3, x4, x5)  =  U15_GG(x1, x2, x3, x4, x5)
U16_GG(x1, x2, x3, x4, x5, x6, x7)  =  U16_GG(x1, x2, x3, x4, x7)
U17_GG(x1, x2, x3, x4, x5)  =  U17_GG(x1, x2, x3, x4, x5)
P62_IN_AAAA(x1, x2, x3, x4)  =  P62_IN_AAAA
U7_AAAA(x1, x2, x3, x4, x5)  =  U7_AAAA(x5)
APP63_IN_AAA(x1, x2, x3)  =  APP63_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
APP81_IN_AA(x1, x2)  =  APP81_IN_AA
U4_AA(x1, x2, x3, x4)  =  U4_AA(x4)
U6_AAA(x1, x2, x3, x4, x5)  =  U6_AAA(x5)
U8_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_AAAA(x7)
U9_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_AAAA(x7)
U10_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_AAAA(x7)
U11_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_AAAA(x7)
U12_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U12_AAAA(x7)
U18_GG(x1, x2, x3, x4)  =  U18_GG(x1, x2, x3, x4)
U19_GG(x1, x2, x3, x4)  =  U19_GG(x1, x2, x3, x4)
U20_GG(x1, x2, x3, x4)  =  U20_GG(x1, x2, x3, x4)
P62_IN_GGAA(x1, x2, x3, x4)  =  P62_IN_GGAA(x1, x2)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x1, x2, x5)
APP63_IN_GGA(x1, x2, x3)  =  APP63_IN_GGA(x1, x2)
U5_GGA(x1, x2, x3, x4)  =  U5_GGA(x1, x4)
APP81_IN_GA(x1, x2)  =  APP81_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)
U6_GGA(x1, x2, x3, x4, x5)  =  U6_GGA(x1, x2, x3, x5)
U8_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U8_GGAA(x1, x2, x7)
U9_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U9_GGAA(x1, x2, x7)
U10_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_GGAA(x1, x2, x7)
U11_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_GGAA(x1, x2, x7)
U12_GGAA(x1, x2, x3, x4, x5, x6, x7)  =  U12_GGAA(x1, x2, x7)
U21_GG(x1, x2, x3, x4, x5, x6)  =  U21_GG(x1, x2, x3, x4, x5, x6)
U22_GG(x1, x2, x3, x4, x5, x6)  =  U22_GG(x1, x2, x3, x4, x5, x6)
U23_GG(x1, x2, x3, x4, x5, x6)  =  U23_GG(x1, x2, x3, x4, x5, x6)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 7 SCCs with 45 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP81_IN_GA(T134, cons(X412, X393)) → APP81_IN_GA(T134, X393)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP81_IN_GA(x1, x2)  =  APP81_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(8) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP81_IN_GA(T134, cons(X412, X393)) → APP81_IN_GA(T134, X393)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
APP81_IN_GA(x1, x2)  =  APP81_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(10) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(11) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP81_IN_GA(T134) → APP81_IN_GA(T134)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(12) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP81_IN_GA(T134) evaluates to t =APP81_IN_GA(T134)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP81_IN_GA(T134) to APP81_IN_GA(T134).



(13) NO

(14) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_GGA(T161, T162, X324)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP63_IN_GGA(x1, x2, x3)  =  APP63_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(15) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP63_IN_GGA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_GGA(T161, T162, X324)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
.(x1, x2)  =  .(x1, x2)
APP63_IN_GGA(x1, x2, x3)  =  APP63_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP63_IN_GGA(.(T159, T161), T162) → APP63_IN_GGA(T161, T162)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(19) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP63_IN_GGA(.(T159, T161), T162) → APP63_IN_GGA(T161, T162)
    The graph contains the following edges 1 > 1, 2 >= 2

(20) YES

(21) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP81_IN_AA(T134, cons(X412, X393)) → APP81_IN_AA(T134, X393)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP81_IN_AA(x1, x2)  =  APP81_IN_AA

We have to consider all (P,R,Pi)-chains

(22) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP81_IN_AA(T134, cons(X412, X393)) → APP81_IN_AA(T134, X393)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
APP81_IN_AA(x1, x2)  =  APP81_IN_AA

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP81_IN_AAAPP81_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(26) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP81_IN_AA evaluates to t =APP81_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP81_IN_AA to APP81_IN_AA.



(27) NO

(28) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_AAA(T161, T162, X324)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP63_IN_AAA(x1, x2, x3)  =  APP63_IN_AAA

We have to consider all (P,R,Pi)-chains

(29) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP63_IN_AAA(.(T159, T161), T162, cons(T159, X324)) → APP63_IN_AAA(T161, T162, X324)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
.(x1, x2)  =  .(x1, x2)
APP63_IN_AAA(x1, x2, x3)  =  APP63_IN_AAA

We have to consider all (P,R,Pi)-chains

(31) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP63_IN_AAAAPP63_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(33) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP63_IN_AAA evaluates to t =APP63_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP63_IN_AAA to APP63_IN_AAA.



(34) NO

(35) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P62_IN_AAAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T96, T97, cons(T196, T197)))
U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T96, T97, cons(T196, T197))) → U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
P62_IN_AAAA(x1, x2, x3, x4)  =  P62_IN_AAAA
U10_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_AAAA(x7)
U11_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_AAAA(x7)

We have to consider all (P,R,Pi)-chains

(36) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P62_IN_AAAA(T96, T97, cons(T196, T197), cons(T190, T191)) → U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T96, T97, cons(T196, T197)))
U10_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T96, T97, cons(T196, T197))) → U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_in_aaa(T190, T191, T195))
U11_AAAA(T96, T97, T196, T197, T190, T191, appc63_out_aaa(T190, T191, T195)) → P62_IN_AAAA(T196, T197, X503, T195)

The TRS R consists of the following rules:

appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
P62_IN_AAAA(x1, x2, x3, x4)  =  P62_IN_AAAA
U10_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U10_AAAA(x7)
U11_AAAA(x1, x2, x3, x4, x5, x6, x7)  =  U11_AAAA(x7)

We have to consider all (P,R,Pi)-chains

(38) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P62_IN_AAAAU10_AAAA(appc63_in_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa)
U11_AAAA(appc63_out_aaa) → P62_IN_AAAA

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU29_aaa(appc81_in_aa)
appc63_in_aaaU30_aaa(appc63_in_aaa)
U29_aaa(appc81_out_aa(T124)) → appc63_out_aaa
U30_aaa(appc63_out_aaa) → appc63_out_aaa
appc81_in_aaU28_aa(appc81_in_aa)
U28_aa(appc81_out_aa(T134)) → appc81_out_aa(T134)

The set Q consists of the following terms:

appc63_in_aaa
U29_aaa(x0)
U30_aaa(x0)
appc81_in_aa
U28_aa(x0)

We have to consider all (P,Q,R)-chains.

(40) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.

Strictly oriented rules of the TRS R:

appc63_in_aaaU29_aaa(appc81_in_aa)
U29_aaa(appc81_out_aa(T124)) → appc63_out_aaa

Used ordering: Polynomial interpretation [POLO]:

POL(P62_IN_AAAA) = 1   
POL(U10_AAAA(x1)) = x1   
POL(U11_AAAA(x1)) = x1   
POL(U28_aa(x1)) = x1   
POL(U29_aaa(x1)) = x1   
POL(U30_aaa(x1)) = x1   
POL(appc63_in_aaa) = 1   
POL(appc63_out_aaa) = 1   
POL(appc81_in_aa) = 0   
POL(appc81_out_aa(x1)) = 2 + x1   

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P62_IN_AAAAU10_AAAA(appc63_in_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa)
U11_AAAA(appc63_out_aaa) → P62_IN_AAAA

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU30_aaa(appc63_in_aaa)
U30_aaa(appc63_out_aaa) → appc63_out_aaa
appc81_in_aaU28_aa(appc81_in_aa)
U28_aa(appc81_out_aa(T134)) → appc81_out_aa(T134)

The set Q consists of the following terms:

appc63_in_aaa
U29_aaa(x0)
U30_aaa(x0)
appc81_in_aa
U28_aa(x0)

We have to consider all (P,Q,R)-chains.

(42) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P62_IN_AAAAU10_AAAA(appc63_in_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa)
U11_AAAA(appc63_out_aaa) → P62_IN_AAAA

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU30_aaa(appc63_in_aaa)
U30_aaa(appc63_out_aaa) → appc63_out_aaa

The set Q consists of the following terms:

appc63_in_aaa
U29_aaa(x0)
U30_aaa(x0)
appc81_in_aa
U28_aa(x0)

We have to consider all (P,Q,R)-chains.

(44) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

U29_aaa(x0)
appc81_in_aa
U28_aa(x0)

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P62_IN_AAAAU10_AAAA(appc63_in_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa)
U11_AAAA(appc63_out_aaa) → P62_IN_AAAA

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU30_aaa(appc63_in_aaa)
U30_aaa(appc63_out_aaa) → appc63_out_aaa

The set Q consists of the following terms:

appc63_in_aaa
U30_aaa(x0)

We have to consider all (P,Q,R)-chains.

(46) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P62_IN_AAAAU10_AAAA(appc63_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

P62_IN_AAAAU10_AAAA(appc63_out_aaa)
P62_IN_AAAAU10_AAAA(U30_aaa(appc63_in_aaa))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa)
U11_AAAA(appc63_out_aaa) → P62_IN_AAAA
P62_IN_AAAAU10_AAAA(appc63_out_aaa)
P62_IN_AAAAU10_AAAA(U30_aaa(appc63_in_aaa))

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU30_aaa(appc63_in_aaa)
U30_aaa(appc63_out_aaa) → appc63_out_aaa

The set Q consists of the following terms:

appc63_in_aaa
U30_aaa(x0)

We have to consider all (P,Q,R)-chains.

(48) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_out_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(U30_aaa(appc63_in_aaa))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U11_AAAA(appc63_out_aaa) → P62_IN_AAAA
P62_IN_AAAAU10_AAAA(appc63_out_aaa)
P62_IN_AAAAU10_AAAA(U30_aaa(appc63_in_aaa))
U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_out_aaa)
U10_AAAA(appc63_out_aaa) → U11_AAAA(U30_aaa(appc63_in_aaa))

The TRS R consists of the following rules:

appc63_in_aaaappc63_out_aaa
appc63_in_aaaU30_aaa(appc63_in_aaa)
U30_aaa(appc63_out_aaa) → appc63_out_aaa

The set Q consists of the following terms:

appc63_in_aaa
U30_aaa(x0)

We have to consider all (P,Q,R)-chains.

(50) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = P62_IN_AAAA evaluates to t =P62_IN_AAAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

P62_IN_AAAAU10_AAAA(appc63_out_aaa)
with rule P62_IN_AAAAU10_AAAA(appc63_out_aaa) at position [] and matcher [ ]

U10_AAAA(appc63_out_aaa)U11_AAAA(appc63_out_aaa)
with rule U10_AAAA(appc63_out_aaa) → U11_AAAA(appc63_out_aaa) at position [] and matcher [ ]

U11_AAAA(appc63_out_aaa)P62_IN_AAAA
with rule U11_AAAA(appc63_out_aaa) → P62_IN_AAAA

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(51) NO

(52) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP33_IN_GA(T47, cons(X180, X161)) → APP33_IN_GA(T47, X161)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP33_IN_GA(x1, x2)  =  APP33_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(53) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(54) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP33_IN_GA(T47, cons(X180, X161)) → APP33_IN_GA(T47, X161)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
APP33_IN_GA(x1, x2)  =  APP33_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(55) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP33_IN_GA(T47) → APP33_IN_GA(T47)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(57) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = APP33_IN_GA(T47) evaluates to t =APP33_IN_GA(T47)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from APP33_IN_GA(T47) to APP33_IN_GA(T47).



(58) NO

(59) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → APP15_IN_GGA(T68, T38, X92)

The TRS R consists of the following rules:

appc15_in_gga(nil, T31, T31) → appc15_out_gga(nil, T31, T31)
appc15_in_gga([], T38, cons(X105, X92)) → U26_gga(T38, X105, X92, appc33_in_ga(T38, X92))
appc33_in_ga(T47, cons(X180, X161)) → U25_ga(T47, X180, X161, appc33_in_ga(T47, X161))
U25_ga(T47, X180, X161, appc33_out_ga(T47, X161)) → appc33_out_ga(T47, cons(X180, X161))
U26_gga(T38, X105, X92, appc33_out_ga(T38, X92)) → appc15_out_gga([], T38, cons(X105, X92))
appc15_in_gga(.(T67, T68), T38, cons(T67, X92)) → U27_gga(T67, T68, T38, X92, appc15_in_gga(T68, T38, X92))
U27_gga(T67, T68, T38, X92, appc15_out_gga(T68, T38, X92)) → appc15_out_gga(.(T67, T68), T38, cons(T67, X92))
appc63_in_aaa(nil, T111, T111) → appc63_out_aaa(nil, T111, T111)
appc63_in_aaa([], T124, cons(X337, X324)) → U29_aaa(T124, X337, X324, appc81_in_aa(T124, X324))
appc81_in_aa(T134, cons(X412, X393)) → U28_aa(T134, X412, X393, appc81_in_aa(T134, X393))
U28_aa(T134, X412, X393, appc81_out_aa(T134, X393)) → appc81_out_aa(T134, cons(X412, X393))
U29_aaa(T124, X337, X324, appc81_out_aa(T124, X324)) → appc63_out_aaa([], T124, cons(X337, X324))
appc63_in_aaa(.(T159, T161), T162, cons(T159, X324)) → U30_aaa(T159, T161, T162, X324, appc63_in_aaa(T161, T162, X324))
U30_aaa(T159, T161, T162, X324, appc63_out_aaa(T161, T162, X324)) → appc63_out_aaa(.(T159, T161), T162, cons(T159, X324))
appc63_in_gga(nil, T111, T111) → appc63_out_gga(nil, T111, T111)
appc63_in_gga([], T124, cons(X337, X324)) → U29_gga(T124, X337, X324, appc81_in_ga(T124, X324))
appc81_in_ga(T134, cons(X412, X393)) → U28_ga(T134, X412, X393, appc81_in_ga(T134, X393))
U28_ga(T134, X412, X393, appc81_out_ga(T134, X393)) → appc81_out_ga(T134, cons(X412, X393))
U29_gga(T124, X337, X324, appc81_out_ga(T124, X324)) → appc63_out_gga([], T124, cons(X337, X324))
appc63_in_gga(.(T159, T161), T162, cons(T159, X324)) → U30_gga(T159, T161, T162, X324, appc63_in_gga(T161, T162, X324))
U30_gga(T159, T161, T162, X324, appc63_out_gga(T161, T162, X324)) → appc63_out_gga(.(T159, T161), T162, cons(T159, X324))

The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
nil  =  nil
[]  =  []
.(x1, x2)  =  .(x1, x2)
appc15_in_gga(x1, x2, x3)  =  appc15_in_gga(x1, x2)
appc15_out_gga(x1, x2, x3)  =  appc15_out_gga(x1, x2)
U26_gga(x1, x2, x3, x4)  =  U26_gga(x1, x4)
appc33_in_ga(x1, x2)  =  appc33_in_ga(x1)
U25_ga(x1, x2, x3, x4)  =  U25_ga(x1, x4)
appc33_out_ga(x1, x2)  =  appc33_out_ga(x1)
U27_gga(x1, x2, x3, x4, x5)  =  U27_gga(x1, x2, x3, x5)
appc63_in_aaa(x1, x2, x3)  =  appc63_in_aaa
appc63_out_aaa(x1, x2, x3)  =  appc63_out_aaa
U29_aaa(x1, x2, x3, x4)  =  U29_aaa(x4)
appc81_in_aa(x1, x2)  =  appc81_in_aa
U28_aa(x1, x2, x3, x4)  =  U28_aa(x4)
appc81_out_aa(x1, x2)  =  appc81_out_aa(x1)
U30_aaa(x1, x2, x3, x4, x5)  =  U30_aaa(x5)
appc63_in_gga(x1, x2, x3)  =  appc63_in_gga(x1, x2)
appc63_out_gga(x1, x2, x3)  =  appc63_out_gga(x1, x2)
U29_gga(x1, x2, x3, x4)  =  U29_gga(x1, x4)
appc81_in_ga(x1, x2)  =  appc81_in_ga(x1)
U28_ga(x1, x2, x3, x4)  =  U28_ga(x1, x4)
appc81_out_ga(x1, x2)  =  appc81_out_ga(x1)
U30_gga(x1, x2, x3, x4, x5)  =  U30_gga(x1, x2, x3, x5)
APP15_IN_GGA(x1, x2, x3)  =  APP15_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(60) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(61) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP15_IN_GGA(.(T67, T68), T38, cons(T67, X92)) → APP15_IN_GGA(T68, T38, X92)

R is empty.
The argument filtering Pi contains the following mapping:
cons(x1, x2)  =  cons(x1, x2)
.(x1, x2)  =  .(x1, x2)
APP15_IN_GGA(x1, x2, x3)  =  APP15_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(62) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP15_IN_GGA(.(T67, T68), T38) → APP15_IN_GGA(T68, T38)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(64) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP15_IN_GGA(.(T67, T68), T38) → APP15_IN_GGA(T68, T38)
    The graph contains the following edges 1 > 1, 2 >= 2

(65) YES