(0) Obligation:

Clauses:

in_order(void, L) :- ','(!, eq(L, [])).
in_order(T, Xs) :- ','(value(T, X), ','(app(Ls, .(X, Rs), Xs), ','(left(T, L), ','(in_order(L, Ls), ','(right(T, R), in_order(R, Rs)))))).
app([], X, X).
app(.(X, Xs), Ys, .(X, Zs)) :- app(Xs, Ys, Zs).
left(void, void).
left(node(L, X1, X2), L).
right(void, void).
right(node(X3, X4, R), R).
value(void, X5).
value(node(X6, X, X7), X).
eq(X, X).

Queries:

in_order(a,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

app16([], X27, X28, .(X27, X28)).
app16(.(X37, X38), X39, X40, .(X37, T11)) :- app16(X38, X39, X40, T11).
in_order30([]).
app47([], T25, X60, .(T25, X60)).
app47(.(X69, X70), T28, X71, .(X69, T27)) :- app47(X70, T28, X71, T27).
in_order1(void, []).
in_order1(void, T6) :- app16(X17, X23, X18, T6).
in_order1(void, T6) :- ','(app16(T8, T9, T10, T6), in_order30(T8)).
in_order1(void, T6) :- ','(app16(T8, T9, T10, T6), ','(in_order30(T8), in_order30(T10))).
in_order1(node(T18, T17, T19), T6) :- app47(X17, T17, X18, T6).
in_order1(node(T32, T30, T33), T6) :- ','(app47(T20, T30, T21, T6), in_order1(T32, T20)).
in_order1(node(T36, T37, T39), T6) :- ','(app47(T20, T37, T21, T6), ','(in_order1(T36, T20), in_order1(T39, T21))).
in_order1(node(T44, T43, T45), T6) :- p45(X17, T43, X18, T6, T44, T45, X19, X20).
p45(X17, T17, X18, T6, T18, T19, X19, X20) :- app47(X17, T17, X18, T6).
p45(T20, T30, T21, T6, T32, T33, T32, X20) :- ','(app47(T20, T30, T21, T6), in_order1(T32, T20)).
p45(T20, T37, T21, T6, T36, T39, T36, T39) :- ','(app47(T20, T37, T21, T6), ','(in_order1(T36, T20), in_order1(T39, T21))).

Queries:

in_order1(a,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
in_order1_in: (f,b)
app16_in: (f,f,f,b)
app47_in: (f,f,f,b)
p45_in: (f,f,f,b,f,f,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(void, T6) → U3_AG(T6, app16_in_aaag(X17, X23, X18, T6))
IN_ORDER1_IN_AG(void, T6) → APP16_IN_AAAG(X17, X23, X18, T6)
APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → U1_AAAG(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → APP16_IN_AAAG(X38, X39, X40, T11)
IN_ORDER1_IN_AG(void, T6) → U4_AG(T6, app16_in_aaag(T8, T9, T10, T6))
U4_AG(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_AG(T6, T10, in_order30_in_g(T8))
U4_AG(T6, app16_out_aaag(T8, T9, T10, T6)) → IN_ORDER30_IN_G(T8)
U5_AG(T6, T10, in_order30_out_g(T8)) → U6_AG(T6, in_order30_in_g(T10))
U5_AG(T6, T10, in_order30_out_g(T8)) → IN_ORDER30_IN_G(T10)
IN_ORDER1_IN_AG(node(T18, T17, T19), T6) → U7_AG(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
IN_ORDER1_IN_AG(node(T18, T17, T19), T6) → APP47_IN_AAAG(X17, T17, X18, T6)
APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → U2_AAAG(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → APP47_IN_AAAG(X70, T28, X71, T27)
IN_ORDER1_IN_AG(node(T32, T30, T33), T6) → U8_AG(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_AG(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_AG(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
U8_AG(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
IN_ORDER1_IN_AG(node(T36, T37, T39), T6) → U10_AG(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_AG(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)
IN_ORDER1_IN_AG(node(T44, T43, T45), T6) → U13_AG(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
IN_ORDER1_IN_AG(node(T44, T43, T45), T6) → P45_IN_AAAGAAAA(X17, T43, X18, T6, T44, T45, X19, X20)
P45_IN_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20) → U14_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
P45_IN_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20) → APP47_IN_AAAG(X17, T17, X18, T6)
P45_IN_AAAGAAAA(T20, T30, T21, T6, T32, T33, T32, X20) → U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
P45_IN_AAAGAAAA(T20, T30, T21, T6, T32, T33, T32, X20) → APP47_IN_AAAG(T20, T30, T21, T6)
U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
P45_IN_AAAGAAAA(T20, T37, T21, T6, T36, T39, T36, T39) → U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
P45_IN_AAAGAAAA(T20, T37, T21, T6, T36, T39, T36, T39) → APP47_IN_AAAG(T20, T37, T21, T6)
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)
U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)
U11_AG(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_AG(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U11_AG(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)

The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)
IN_ORDER1_IN_AG(x1, x2)  =  IN_ORDER1_IN_AG(x2)
U3_AG(x1, x2)  =  U3_AG(x1, x2)
APP16_IN_AAAG(x1, x2, x3, x4)  =  APP16_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U4_AG(x1, x2)  =  U4_AG(x1, x2)
U5_AG(x1, x2, x3)  =  U5_AG(x1, x2, x3)
IN_ORDER30_IN_G(x1)  =  IN_ORDER30_IN_G(x1)
U6_AG(x1, x2)  =  U6_AG(x1, x2)
U7_AG(x1, x2, x3, x4, x5)  =  U7_AG(x4, x5)
APP47_IN_AAAG(x1, x2, x3, x4)  =  APP47_IN_AAAG(x4)
U2_AAAG(x1, x2, x3, x4, x5, x6)  =  U2_AAAG(x1, x5, x6)
U8_AG(x1, x2, x3, x4, x5)  =  U8_AG(x4, x5)
U9_AG(x1, x2, x3, x4, x5)  =  U9_AG(x4, x5)
U10_AG(x1, x2, x3, x4, x5)  =  U10_AG(x4, x5)
U11_AG(x1, x2, x3, x4, x5, x6)  =  U11_AG(x4, x5, x6)
U13_AG(x1, x2, x3, x4, x5)  =  U13_AG(x4, x5)
P45_IN_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  P45_IN_AAAGAAAA(x4)
U14_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_AAAGAAAA(x4, x9)
U15_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_AAAGAAAA(x4, x8)
U16_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_AAAGAAAA(x1, x2, x3, x4, x8)
U17_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U17_AAAGAAAA(x4, x7)
U18_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U18_AAAGAAAA(x1, x2, x3, x4, x7)
U19_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U19_AAAGAAAA(x1, x2, x3, x4, x7)
U12_AG(x1, x2, x3, x4, x5)  =  U12_AG(x4, x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(void, T6) → U3_AG(T6, app16_in_aaag(X17, X23, X18, T6))
IN_ORDER1_IN_AG(void, T6) → APP16_IN_AAAG(X17, X23, X18, T6)
APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → U1_AAAG(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → APP16_IN_AAAG(X38, X39, X40, T11)
IN_ORDER1_IN_AG(void, T6) → U4_AG(T6, app16_in_aaag(T8, T9, T10, T6))
U4_AG(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_AG(T6, T10, in_order30_in_g(T8))
U4_AG(T6, app16_out_aaag(T8, T9, T10, T6)) → IN_ORDER30_IN_G(T8)
U5_AG(T6, T10, in_order30_out_g(T8)) → U6_AG(T6, in_order30_in_g(T10))
U5_AG(T6, T10, in_order30_out_g(T8)) → IN_ORDER30_IN_G(T10)
IN_ORDER1_IN_AG(node(T18, T17, T19), T6) → U7_AG(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
IN_ORDER1_IN_AG(node(T18, T17, T19), T6) → APP47_IN_AAAG(X17, T17, X18, T6)
APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → U2_AAAG(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → APP47_IN_AAAG(X70, T28, X71, T27)
IN_ORDER1_IN_AG(node(T32, T30, T33), T6) → U8_AG(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_AG(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_AG(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
U8_AG(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
IN_ORDER1_IN_AG(node(T36, T37, T39), T6) → U10_AG(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_AG(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)
IN_ORDER1_IN_AG(node(T44, T43, T45), T6) → U13_AG(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
IN_ORDER1_IN_AG(node(T44, T43, T45), T6) → P45_IN_AAAGAAAA(X17, T43, X18, T6, T44, T45, X19, X20)
P45_IN_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20) → U14_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
P45_IN_AAAGAAAA(X17, T17, X18, T6, T18, T19, X19, X20) → APP47_IN_AAAG(X17, T17, X18, T6)
P45_IN_AAAGAAAA(T20, T30, T21, T6, T32, T33, T32, X20) → U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
P45_IN_AAAGAAAA(T20, T30, T21, T6, T32, T33, T32, X20) → APP47_IN_AAAG(T20, T30, T21, T6)
U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
P45_IN_AAAGAAAA(T20, T37, T21, T6, T36, T39, T36, T39) → U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
P45_IN_AAAGAAAA(T20, T37, T21, T6, T36, T39, T36, T39) → APP47_IN_AAAG(T20, T37, T21, T6)
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)
U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)
U11_AG(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_AG(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U11_AG(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)

The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)
IN_ORDER1_IN_AG(x1, x2)  =  IN_ORDER1_IN_AG(x2)
U3_AG(x1, x2)  =  U3_AG(x1, x2)
APP16_IN_AAAG(x1, x2, x3, x4)  =  APP16_IN_AAAG(x4)
U1_AAAG(x1, x2, x3, x4, x5, x6)  =  U1_AAAG(x1, x5, x6)
U4_AG(x1, x2)  =  U4_AG(x1, x2)
U5_AG(x1, x2, x3)  =  U5_AG(x1, x2, x3)
IN_ORDER30_IN_G(x1)  =  IN_ORDER30_IN_G(x1)
U6_AG(x1, x2)  =  U6_AG(x1, x2)
U7_AG(x1, x2, x3, x4, x5)  =  U7_AG(x4, x5)
APP47_IN_AAAG(x1, x2, x3, x4)  =  APP47_IN_AAAG(x4)
U2_AAAG(x1, x2, x3, x4, x5, x6)  =  U2_AAAG(x1, x5, x6)
U8_AG(x1, x2, x3, x4, x5)  =  U8_AG(x4, x5)
U9_AG(x1, x2, x3, x4, x5)  =  U9_AG(x4, x5)
U10_AG(x1, x2, x3, x4, x5)  =  U10_AG(x4, x5)
U11_AG(x1, x2, x3, x4, x5, x6)  =  U11_AG(x4, x5, x6)
U13_AG(x1, x2, x3, x4, x5)  =  U13_AG(x4, x5)
P45_IN_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  P45_IN_AAAGAAAA(x4)
U14_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_AAAGAAAA(x4, x9)
U15_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_AAAGAAAA(x4, x8)
U16_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_AAAGAAAA(x1, x2, x3, x4, x8)
U17_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U17_AAAGAAAA(x4, x7)
U18_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U18_AAAGAAAA(x1, x2, x3, x4, x7)
U19_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U19_AAAGAAAA(x1, x2, x3, x4, x7)
U12_AG(x1, x2, x3, x4, x5)  =  U12_AG(x4, x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 20 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → APP47_IN_AAAG(X70, T28, X71, T27)

The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)
APP47_IN_AAAG(x1, x2, x3, x4)  =  APP47_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP47_IN_AAAG(.(X69, X70), T28, X71, .(X69, T27)) → APP47_IN_AAAG(X70, T28, X71, T27)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP47_IN_AAAG(x1, x2, x3, x4)  =  APP47_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP47_IN_AAAG(.(X69, T27)) → APP47_IN_AAAG(T27)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP47_IN_AAAG(.(X69, T27)) → APP47_IN_AAAG(T27)
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → APP16_IN_AAAG(X38, X39, X40, T11)

The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)
APP16_IN_AAAG(x1, x2, x3, x4)  =  APP16_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

APP16_IN_AAAG(.(X37, X38), X39, X40, .(X37, T11)) → APP16_IN_AAAG(X38, X39, X40, T11)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
APP16_IN_AAAG(x1, x2, x3, x4)  =  APP16_IN_AAAG(x4)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

APP16_IN_AAAG(.(X37, T11)) → APP16_IN_AAAG(T11)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • APP16_IN_AAAG(.(X37, T11)) → APP16_IN_AAAG(T11)
    The graph contains the following edges 1 > 1

(22) TRUE

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(node(T32, T30, T33), T6) → U8_AG(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_AG(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
IN_ORDER1_IN_AG(node(T36, T37, T39), T6) → U10_AG(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_AG(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
U11_AG(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)
IN_ORDER1_IN_AG(node(T44, T43, T45), T6) → P45_IN_AAAGAAAA(X17, T43, X18, T6, T44, T45, X19, X20)
P45_IN_AAAGAAAA(T20, T30, T21, T6, T32, T33, T32, X20) → U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_AAAGAAAA(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T32, T20)
P45_IN_AAAGAAAA(T20, T37, T21, T6, T36, T39, T36, T39) → U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_AAAGAAAA(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → IN_ORDER1_IN_AG(T39, T21)
U17_AAAGAAAA(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)
U10_AG(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T36, T20)

The TRS R consists of the following rules:

in_order1_in_ag(void, []) → in_order1_out_ag(void, [])
in_order1_in_ag(void, T6) → U3_ag(T6, app16_in_aaag(X17, X23, X18, T6))
app16_in_aaag([], X27, X28, .(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, X38), X39, X40, .(X37, T11)) → U1_aaag(X37, X38, X39, X40, T11, app16_in_aaag(X38, X39, X40, T11))
U1_aaag(X37, X38, X39, X40, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(void, T6)
in_order1_in_ag(void, T6) → U4_ag(T6, app16_in_aaag(T8, T9, T10, T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(void, T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(void, T6)
in_order1_in_ag(node(T18, T17, T19), T6) → U7_ag(T18, T17, T19, T6, app47_in_aaag(X17, T17, X18, T6))
app47_in_aaag([], T25, X60, .(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, X70), T28, X71, .(X69, T27)) → U2_aaag(X69, X70, T28, X71, T27, app47_in_aaag(X70, T28, X71, T27))
U2_aaag(X69, X70, T28, X71, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T18, T17, T19, T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(node(T18, T17, T19), T6)
in_order1_in_ag(node(T32, T30, T33), T6) → U8_ag(T32, T30, T33, T6, app47_in_aaag(T20, T30, T21, T6))
U8_ag(T32, T30, T33, T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T32, T30, T33, T6, in_order1_in_ag(T32, T20))
in_order1_in_ag(node(T36, T37, T39), T6) → U10_ag(T36, T37, T39, T6, app47_in_aaag(T20, T37, T21, T6))
U10_ag(T36, T37, T39, T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T36, T37, T39, T6, T21, in_order1_in_ag(T36, T20))
in_order1_in_ag(node(T44, T43, T45), T6) → U13_ag(T44, T43, T45, T6, p45_in_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20))
p45_in_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20) → U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_in_aaag(X17, T17, X18, T6))
U14_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6, T18, T19, X19, X20)
p45_in_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20) → U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_in_aaag(T20, T30, T21, T6))
U15_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_in_ag(T32, T20))
U16_aaagaaaa(T20, T30, T21, T6, T32, T33, X20, in_order1_out_ag(T32, T20)) → p45_out_aaagaaaa(T20, T30, T21, T6, T32, T33, T32, X20)
p45_in_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39) → U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_in_aaag(T20, T37, T21, T6))
U17_aaagaaaa(T20, T37, T21, T6, T36, T39, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T36, T20))
U18_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T36, T20)) → U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_in_ag(T39, T21))
U19_aaagaaaa(T20, T37, T21, T6, T36, T39, in_order1_out_ag(T39, T21)) → p45_out_aaagaaaa(T20, T37, T21, T6, T36, T39, T36, T39)
U13_ag(T44, T43, T45, T6, p45_out_aaagaaaa(X17, T43, X18, T6, T44, T45, X19, X20)) → in_order1_out_ag(node(T44, T43, T45), T6)
U11_ag(T36, T37, T39, T6, T21, in_order1_out_ag(T36, T20)) → U12_ag(T36, T37, T39, T6, in_order1_in_ag(T39, T21))
U12_ag(T36, T37, T39, T6, in_order1_out_ag(T39, T21)) → in_order1_out_ag(node(T36, T37, T39), T6)
U9_ag(T32, T30, T33, T6, in_order1_out_ag(T32, T20)) → in_order1_out_ag(node(T32, T30, T33), T6)

The argument filtering Pi contains the following mapping:
in_order1_in_ag(x1, x2)  =  in_order1_in_ag(x2)
[]  =  []
in_order1_out_ag(x1, x2)  =  in_order1_out_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
app16_in_aaag(x1, x2, x3, x4)  =  app16_in_aaag(x4)
.(x1, x2)  =  .(x1, x2)
app16_out_aaag(x1, x2, x3, x4)  =  app16_out_aaag(x1, x2, x3, x4)
U1_aaag(x1, x2, x3, x4, x5, x6)  =  U1_aaag(x1, x5, x6)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
U5_ag(x1, x2, x3)  =  U5_ag(x1, x2, x3)
in_order30_in_g(x1)  =  in_order30_in_g(x1)
in_order30_out_g(x1)  =  in_order30_out_g(x1)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
U7_ag(x1, x2, x3, x4, x5)  =  U7_ag(x4, x5)
app47_in_aaag(x1, x2, x3, x4)  =  app47_in_aaag(x4)
app47_out_aaag(x1, x2, x3, x4)  =  app47_out_aaag(x1, x2, x3, x4)
U2_aaag(x1, x2, x3, x4, x5, x6)  =  U2_aaag(x1, x5, x6)
U8_ag(x1, x2, x3, x4, x5)  =  U8_ag(x4, x5)
U9_ag(x1, x2, x3, x4, x5)  =  U9_ag(x4, x5)
U10_ag(x1, x2, x3, x4, x5)  =  U10_ag(x4, x5)
U11_ag(x1, x2, x3, x4, x5, x6)  =  U11_ag(x4, x5, x6)
U13_ag(x1, x2, x3, x4, x5)  =  U13_ag(x4, x5)
p45_in_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_in_aaagaaaa(x4)
U14_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8, x9)  =  U14_aaagaaaa(x4, x9)
p45_out_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  p45_out_aaagaaaa(x1, x2, x3, x4)
U15_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_aaagaaaa(x4, x8)
U16_aaagaaaa(x1, x2, x3, x4, x5, x6, x7, x8)  =  U16_aaagaaaa(x1, x2, x3, x4, x8)
U17_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U17_aaagaaaa(x4, x7)
U18_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U18_aaagaaaa(x1, x2, x3, x4, x7)
U19_aaagaaaa(x1, x2, x3, x4, x5, x6, x7)  =  U19_aaagaaaa(x1, x2, x3, x4, x7)
U12_ag(x1, x2, x3, x4, x5)  =  U12_ag(x4, x5)
IN_ORDER1_IN_AG(x1, x2)  =  IN_ORDER1_IN_AG(x2)
U8_AG(x1, x2, x3, x4, x5)  =  U8_AG(x4, x5)
U10_AG(x1, x2, x3, x4, x5)  =  U10_AG(x4, x5)
U11_AG(x1, x2, x3, x4, x5, x6)  =  U11_AG(x4, x5, x6)
P45_IN_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  P45_IN_AAAGAAAA(x4)
U15_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7, x8)  =  U15_AAAGAAAA(x4, x8)
U17_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U17_AAAGAAAA(x4, x7)
U18_AAAGAAAA(x1, x2, x3, x4, x5, x6, x7)  =  U18_AAAGAAAA(x1, x2, x3, x4, x7)

We have to consider all (P,R,Pi)-chains

(24) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(25) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(T6) → U8_AG(T6, app47_in_aaag(T6))
U8_AG(T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T20)
IN_ORDER1_IN_AG(T6) → U10_AG(T6, app47_in_aaag(T6))
U10_AG(T6, app47_out_aaag(T20, T37, T21, T6)) → U11_AG(T6, T21, in_order1_in_ag(T20))
U11_AG(T6, T21, in_order1_out_ag(T20)) → IN_ORDER1_IN_AG(T21)
IN_ORDER1_IN_AG(T6) → P45_IN_AAAGAAAA(T6)
P45_IN_AAAGAAAA(T6) → U15_AAAGAAAA(T6, app47_in_aaag(T6))
U15_AAAGAAAA(T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T20)
P45_IN_AAAGAAAA(T6) → U17_AAAGAAAA(T6, app47_in_aaag(T6))
U17_AAAGAAAA(T6, app47_out_aaag(T20, T37, T21, T6)) → U18_AAAGAAAA(T20, T37, T21, T6, in_order1_in_ag(T20))
U18_AAAGAAAA(T20, T37, T21, T6, in_order1_out_ag(T20)) → IN_ORDER1_IN_AG(T21)
U17_AAAGAAAA(T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T20)
U10_AG(T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T20)

The TRS R consists of the following rules:

in_order1_in_ag([]) → in_order1_out_ag([])
in_order1_in_ag(T6) → U3_ag(T6, app16_in_aaag(T6))
app16_in_aaag(.(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, T11)) → U1_aaag(X37, T11, app16_in_aaag(T11))
U1_aaag(X37, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U4_ag(T6, app16_in_aaag(T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U7_ag(T6, app47_in_aaag(T6))
app47_in_aaag(.(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, T27)) → U2_aaag(X69, T27, app47_in_aaag(T27))
U2_aaag(X69, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U8_ag(T6, app47_in_aaag(T6))
U8_ag(T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T6, in_order1_in_ag(T20))
in_order1_in_ag(T6) → U10_ag(T6, app47_in_aaag(T6))
U10_ag(T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T6, T21, in_order1_in_ag(T20))
in_order1_in_ag(T6) → U13_ag(T6, p45_in_aaagaaaa(T6))
p45_in_aaagaaaa(T6) → U14_aaagaaaa(T6, app47_in_aaag(T6))
U14_aaagaaaa(T6, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6)
p45_in_aaagaaaa(T6) → U15_aaagaaaa(T6, app47_in_aaag(T6))
U15_aaagaaaa(T6, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, in_order1_in_ag(T20))
U16_aaagaaaa(T20, T30, T21, T6, in_order1_out_ag(T20)) → p45_out_aaagaaaa(T20, T30, T21, T6)
p45_in_aaagaaaa(T6) → U17_aaagaaaa(T6, app47_in_aaag(T6))
U17_aaagaaaa(T6, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, in_order1_in_ag(T20))
U18_aaagaaaa(T20, T37, T21, T6, in_order1_out_ag(T20)) → U19_aaagaaaa(T20, T37, T21, T6, in_order1_in_ag(T21))
U19_aaagaaaa(T20, T37, T21, T6, in_order1_out_ag(T21)) → p45_out_aaagaaaa(T20, T37, T21, T6)
U13_ag(T6, p45_out_aaagaaaa(X17, T43, X18, T6)) → in_order1_out_ag(T6)
U11_ag(T6, T21, in_order1_out_ag(T20)) → U12_ag(T6, in_order1_in_ag(T21))
U12_ag(T6, in_order1_out_ag(T21)) → in_order1_out_ag(T6)
U9_ag(T6, in_order1_out_ag(T20)) → in_order1_out_ag(T6)

The set Q consists of the following terms:

in_order1_in_ag(x0)
app16_in_aaag(x0)
U1_aaag(x0, x1, x2)
U3_ag(x0, x1)
U4_ag(x0, x1)
in_order30_in_g(x0)
U5_ag(x0, x1, x2)
U6_ag(x0, x1)
app47_in_aaag(x0)
U2_aaag(x0, x1, x2)
U7_ag(x0, x1)
U8_ag(x0, x1)
U10_ag(x0, x1)
p45_in_aaagaaaa(x0)
U14_aaagaaaa(x0, x1)
U15_aaagaaaa(x0, x1)
U16_aaagaaaa(x0, x1, x2, x3, x4)
U17_aaagaaaa(x0, x1)
U18_aaagaaaa(x0, x1, x2, x3, x4)
U19_aaagaaaa(x0, x1, x2, x3, x4)
U13_ag(x0, x1)
U11_ag(x0, x1, x2)
U12_ag(x0, x1)
U9_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(26) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


U8_AG(T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T20)
U10_AG(T6, app47_out_aaag(T20, T37, T21, T6)) → U11_AG(T6, T21, in_order1_in_ag(T20))
U15_AAAGAAAA(T6, app47_out_aaag(T20, T30, T21, T6)) → IN_ORDER1_IN_AG(T20)
U17_AAAGAAAA(T6, app47_out_aaag(T20, T37, T21, T6)) → U18_AAAGAAAA(T20, T37, T21, T6, in_order1_in_ag(T20))
U17_AAAGAAAA(T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T20)
U10_AG(T6, app47_out_aaag(T20, T37, T21, T6)) → IN_ORDER1_IN_AG(T20)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:

POL(.(x1, x2)) = 1 + x1 + x2   
POL(IN_ORDER1_IN_AG(x1)) = x1   
POL(P45_IN_AAAGAAAA(x1)) = x1   
POL(U10_AG(x1, x2)) = x2   
POL(U10_ag(x1, x2)) = 0   
POL(U11_AG(x1, x2, x3)) = x2   
POL(U11_ag(x1, x2, x3)) = 0   
POL(U12_ag(x1, x2)) = 0   
POL(U13_ag(x1, x2)) = 0   
POL(U14_aaagaaaa(x1, x2)) = 1   
POL(U15_AAAGAAAA(x1, x2)) = x2   
POL(U15_aaagaaaa(x1, x2)) = 0   
POL(U16_aaagaaaa(x1, x2, x3, x4, x5)) = 0   
POL(U17_AAAGAAAA(x1, x2)) = x2   
POL(U17_aaagaaaa(x1, x2)) = 0   
POL(U18_AAAGAAAA(x1, x2, x3, x4, x5)) = x3   
POL(U18_aaagaaaa(x1, x2, x3, x4, x5)) = 0   
POL(U19_aaagaaaa(x1, x2, x3, x4, x5)) = 0   
POL(U1_aaag(x1, x2, x3)) = 0   
POL(U2_aaag(x1, x2, x3)) = 1 + x1 + x3   
POL(U3_ag(x1, x2)) = 0   
POL(U4_ag(x1, x2)) = 0   
POL(U5_ag(x1, x2, x3)) = 0   
POL(U6_ag(x1, x2)) = 0   
POL(U7_ag(x1, x2)) = 0   
POL(U8_AG(x1, x2)) = x2   
POL(U8_ag(x1, x2)) = 0   
POL(U9_ag(x1, x2)) = 0   
POL([]) = 0   
POL(app16_in_aaag(x1)) = 0   
POL(app16_out_aaag(x1, x2, x3, x4)) = 0   
POL(app47_in_aaag(x1)) = x1   
POL(app47_out_aaag(x1, x2, x3, x4)) = 1 + x1 + x3   
POL(in_order1_in_ag(x1)) = 0   
POL(in_order1_out_ag(x1)) = 0   
POL(in_order30_in_g(x1)) = 1   
POL(in_order30_out_g(x1)) = 0   
POL(p45_in_aaagaaaa(x1)) = 1   
POL(p45_out_aaagaaaa(x1, x2, x3, x4)) = 0   

The following usable rules [FROCOS05] were oriented:

app47_in_aaag(.(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, T27)) → U2_aaag(X69, T27, app47_in_aaag(T27))
U2_aaag(X69, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

IN_ORDER1_IN_AG(T6) → U8_AG(T6, app47_in_aaag(T6))
IN_ORDER1_IN_AG(T6) → U10_AG(T6, app47_in_aaag(T6))
U11_AG(T6, T21, in_order1_out_ag(T20)) → IN_ORDER1_IN_AG(T21)
IN_ORDER1_IN_AG(T6) → P45_IN_AAAGAAAA(T6)
P45_IN_AAAGAAAA(T6) → U15_AAAGAAAA(T6, app47_in_aaag(T6))
P45_IN_AAAGAAAA(T6) → U17_AAAGAAAA(T6, app47_in_aaag(T6))
U18_AAAGAAAA(T20, T37, T21, T6, in_order1_out_ag(T20)) → IN_ORDER1_IN_AG(T21)

The TRS R consists of the following rules:

in_order1_in_ag([]) → in_order1_out_ag([])
in_order1_in_ag(T6) → U3_ag(T6, app16_in_aaag(T6))
app16_in_aaag(.(X27, X28)) → app16_out_aaag([], X27, X28, .(X27, X28))
app16_in_aaag(.(X37, T11)) → U1_aaag(X37, T11, app16_in_aaag(T11))
U1_aaag(X37, T11, app16_out_aaag(X38, X39, X40, T11)) → app16_out_aaag(.(X37, X38), X39, X40, .(X37, T11))
U3_ag(T6, app16_out_aaag(X17, X23, X18, T6)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U4_ag(T6, app16_in_aaag(T6))
U4_ag(T6, app16_out_aaag(T8, T9, T10, T6)) → U5_ag(T6, T10, in_order30_in_g(T8))
in_order30_in_g([]) → in_order30_out_g([])
U5_ag(T6, T10, in_order30_out_g(T8)) → in_order1_out_ag(T6)
U5_ag(T6, T10, in_order30_out_g(T8)) → U6_ag(T6, in_order30_in_g(T10))
U6_ag(T6, in_order30_out_g(T10)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U7_ag(T6, app47_in_aaag(T6))
app47_in_aaag(.(T25, X60)) → app47_out_aaag([], T25, X60, .(T25, X60))
app47_in_aaag(.(X69, T27)) → U2_aaag(X69, T27, app47_in_aaag(T27))
U2_aaag(X69, T27, app47_out_aaag(X70, T28, X71, T27)) → app47_out_aaag(.(X69, X70), T28, X71, .(X69, T27))
U7_ag(T6, app47_out_aaag(X17, T17, X18, T6)) → in_order1_out_ag(T6)
in_order1_in_ag(T6) → U8_ag(T6, app47_in_aaag(T6))
U8_ag(T6, app47_out_aaag(T20, T30, T21, T6)) → U9_ag(T6, in_order1_in_ag(T20))
in_order1_in_ag(T6) → U10_ag(T6, app47_in_aaag(T6))
U10_ag(T6, app47_out_aaag(T20, T37, T21, T6)) → U11_ag(T6, T21, in_order1_in_ag(T20))
in_order1_in_ag(T6) → U13_ag(T6, p45_in_aaagaaaa(T6))
p45_in_aaagaaaa(T6) → U14_aaagaaaa(T6, app47_in_aaag(T6))
U14_aaagaaaa(T6, app47_out_aaag(X17, T17, X18, T6)) → p45_out_aaagaaaa(X17, T17, X18, T6)
p45_in_aaagaaaa(T6) → U15_aaagaaaa(T6, app47_in_aaag(T6))
U15_aaagaaaa(T6, app47_out_aaag(T20, T30, T21, T6)) → U16_aaagaaaa(T20, T30, T21, T6, in_order1_in_ag(T20))
U16_aaagaaaa(T20, T30, T21, T6, in_order1_out_ag(T20)) → p45_out_aaagaaaa(T20, T30, T21, T6)
p45_in_aaagaaaa(T6) → U17_aaagaaaa(T6, app47_in_aaag(T6))
U17_aaagaaaa(T6, app47_out_aaag(T20, T37, T21, T6)) → U18_aaagaaaa(T20, T37, T21, T6, in_order1_in_ag(T20))
U18_aaagaaaa(T20, T37, T21, T6, in_order1_out_ag(T20)) → U19_aaagaaaa(T20, T37, T21, T6, in_order1_in_ag(T21))
U19_aaagaaaa(T20, T37, T21, T6, in_order1_out_ag(T21)) → p45_out_aaagaaaa(T20, T37, T21, T6)
U13_ag(T6, p45_out_aaagaaaa(X17, T43, X18, T6)) → in_order1_out_ag(T6)
U11_ag(T6, T21, in_order1_out_ag(T20)) → U12_ag(T6, in_order1_in_ag(T21))
U12_ag(T6, in_order1_out_ag(T21)) → in_order1_out_ag(T6)
U9_ag(T6, in_order1_out_ag(T20)) → in_order1_out_ag(T6)

The set Q consists of the following terms:

in_order1_in_ag(x0)
app16_in_aaag(x0)
U1_aaag(x0, x1, x2)
U3_ag(x0, x1)
U4_ag(x0, x1)
in_order30_in_g(x0)
U5_ag(x0, x1, x2)
U6_ag(x0, x1)
app47_in_aaag(x0)
U2_aaag(x0, x1, x2)
U7_ag(x0, x1)
U8_ag(x0, x1)
U10_ag(x0, x1)
p45_in_aaagaaaa(x0)
U14_aaagaaaa(x0, x1)
U15_aaagaaaa(x0, x1)
U16_aaagaaaa(x0, x1, x2, x3, x4)
U17_aaagaaaa(x0, x1)
U18_aaagaaaa(x0, x1, x2, x3, x4)
U19_aaagaaaa(x0, x1, x2, x3, x4)
U13_ag(x0, x1)
U11_ag(x0, x1, x2)
U12_ag(x0, x1)
U9_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(28) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 7 less nodes.

(29) TRUE