(0) Obligation:

Clauses:

f(0, Y, Z) :- ','(!, eq(Z, 0)).
f(X, Y, Z) :- ','(p(X, P), ','(f(P, Y, U), f(U, Y, Z))).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

f(g,a,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

f1(0, T4, 0).
f1(s(T13), T11, T12) :- f15(T13, T11, X14).
f1(s(T13), T15, T16) :- ','(f15(T13, T15, T14), f1(T14, T15, T16)).
f15(0, T17, 0).
f15(s(T21), T20, X33) :- f15(T21, T20, X32).
f15(s(T21), T23, X33) :- ','(f15(T21, T23, T22), f15(T22, T23, X33)).

Queries:

f1(g,a,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f1_in: (b,f,f) (f,f,f)
f15_in: (b,f,f) (f,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GAA(s(T13), T11, T12) → U1_GAA(T13, T11, T12, f15_in_gaa(T13, T11, X14))
F1_IN_GAA(s(T13), T11, T12) → F15_IN_GAA(T13, T11, X14)
F15_IN_GAA(s(T21), T20, X33) → U4_GAA(T21, T20, X33, f15_in_gaa(T21, T20, X32))
F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)
F15_IN_GAA(s(T21), T23, X33) → U5_GAA(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_GAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → U4_AAA(T21, T20, X33, f15_in_aaa(T21, T20, X32))
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)
F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_AAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F1_IN_GAA(s(T13), T15, T16) → U2_GAA(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_GAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)
F1_IN_AAA(s(T13), T11, T12) → U1_AAA(T13, T11, T12, f15_in_aaa(T13, T11, X14))
F1_IN_AAA(s(T13), T11, T12) → F15_IN_AAA(T13, T11, X14)
F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_AAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_GAA(x1, x2, x3)  =  F1_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U4_AAA(x1, x2, x3, x4)  =  U4_AAA(x4)
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
U6_AAA(x1, x2, x3, x4)  =  U6_AAA(x1, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)
U3_AAA(x1, x2, x3, x4)  =  U3_AAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GAA(s(T13), T11, T12) → U1_GAA(T13, T11, T12, f15_in_gaa(T13, T11, X14))
F1_IN_GAA(s(T13), T11, T12) → F15_IN_GAA(T13, T11, X14)
F15_IN_GAA(s(T21), T20, X33) → U4_GAA(T21, T20, X33, f15_in_gaa(T21, T20, X32))
F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)
F15_IN_GAA(s(T21), T23, X33) → U5_GAA(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_GAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → U4_AAA(T21, T20, X33, f15_in_aaa(T21, T20, X32))
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)
F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_AAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F1_IN_GAA(s(T13), T15, T16) → U2_GAA(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_GAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)
F1_IN_AAA(s(T13), T11, T12) → U1_AAA(T13, T11, T12, f15_in_aaa(T13, T11, X14))
F1_IN_AAA(s(T13), T11, T12) → F15_IN_AAA(T13, T11, X14)
F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_AAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_GAA(x1, x2, x3)  =  F1_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U4_AAA(x1, x2, x3, x4)  =  U4_AAA(x4)
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
U6_AAA(x1, x2, x3, x4)  =  U6_AAA(x1, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)
U3_AAA(x1, x2, x3, x4)  =  U3_AAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 14 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)

The TRS R consists of the following rules:

f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F15_IN_AAAU5_AAA(f15_in_aaa)
U5_AAA(f15_out_aaa(T21)) → F15_IN_AAA
F15_IN_AAAF15_IN_AAA

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(14) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F15_IN_AAAU5_AAA(f15_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

F15_IN_AAAU5_AAA(f15_out_aaa(0))
F15_IN_AAAU5_AAA(U4_aaa(f15_in_aaa))
F15_IN_AAAU5_AAA(U5_aaa(f15_in_aaa))

(15) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_AAA(f15_out_aaa(T21)) → F15_IN_AAA
F15_IN_AAAF15_IN_AAA
F15_IN_AAAU5_AAA(f15_out_aaa(0))
F15_IN_AAAU5_AAA(U4_aaa(f15_in_aaa))
F15_IN_AAAU5_AAA(U5_aaa(f15_in_aaa))

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(16) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = F15_IN_AAA evaluates to t =F15_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from F15_IN_AAA to F15_IN_AAA.



(17) FALSE

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)

We have to consider all (P,R,Pi)-chains

(19) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(20) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)

We have to consider all (P,R,Pi)-chains

(21) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1_IN_AAAU2_AAA(f15_in_aaa)
U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(23) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F1_IN_AAAU2_AAA(f15_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

F1_IN_AAAU2_AAA(f15_out_aaa(0))
F1_IN_AAAU2_AAA(U4_aaa(f15_in_aaa))
F1_IN_AAAU2_AAA(U5_aaa(f15_in_aaa))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA
F1_IN_AAAU2_AAA(f15_out_aaa(0))
F1_IN_AAAU2_AAA(U4_aaa(f15_in_aaa))
F1_IN_AAAU2_AAA(U5_aaa(f15_in_aaa))

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(25) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = F1_IN_AAA evaluates to t =F1_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

F1_IN_AAAU2_AAA(f15_out_aaa(0))
with rule F1_IN_AAAU2_AAA(f15_out_aaa(0)) at position [] and matcher [ ]

U2_AAA(f15_out_aaa(0))F1_IN_AAA
with rule U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(26) FALSE

(27) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(28) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(30) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21)) → F15_IN_GAA(T21)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(32) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F15_IN_GAA(s(T21)) → F15_IN_GAA(T21)
    The graph contains the following edges 1 > 1

(33) TRUE

(34) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f1_in: (b,f,f) (f,f,f)
f15_in: (b,f,f) (f,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(35) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)

(36) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GAA(s(T13), T11, T12) → U1_GAA(T13, T11, T12, f15_in_gaa(T13, T11, X14))
F1_IN_GAA(s(T13), T11, T12) → F15_IN_GAA(T13, T11, X14)
F15_IN_GAA(s(T21), T20, X33) → U4_GAA(T21, T20, X33, f15_in_gaa(T21, T20, X32))
F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)
F15_IN_GAA(s(T21), T23, X33) → U5_GAA(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_GAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → U4_AAA(T21, T20, X33, f15_in_aaa(T21, T20, X32))
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)
F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_AAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F1_IN_GAA(s(T13), T15, T16) → U2_GAA(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_GAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)
F1_IN_AAA(s(T13), T11, T12) → U1_AAA(T13, T11, T12, f15_in_aaa(T13, T11, X14))
F1_IN_AAA(s(T13), T11, T12) → F15_IN_AAA(T13, T11, X14)
F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_AAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_GAA(x1, x2, x3)  =  F1_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x1, x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x1, x4)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U4_AAA(x1, x2, x3, x4)  =  U4_AAA(x4)
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
U6_AAA(x1, x2, x3, x4)  =  U6_AAA(x1, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x1, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)
U3_AAA(x1, x2, x3, x4)  =  U3_AAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_GAA(s(T13), T11, T12) → U1_GAA(T13, T11, T12, f15_in_gaa(T13, T11, X14))
F1_IN_GAA(s(T13), T11, T12) → F15_IN_GAA(T13, T11, X14)
F15_IN_GAA(s(T21), T20, X33) → U4_GAA(T21, T20, X33, f15_in_gaa(T21, T20, X32))
F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)
F15_IN_GAA(s(T21), T23, X33) → U5_GAA(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_GAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_GAA(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → U4_AAA(T21, T20, X33, f15_in_aaa(T21, T20, X32))
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)
F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_AAA(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F1_IN_GAA(s(T13), T15, T16) → U2_GAA(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_GAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_GAA(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)
F1_IN_AAA(s(T13), T11, T12) → U1_AAA(T13, T11, T12, f15_in_aaa(T13, T11, X14))
F1_IN_AAA(s(T13), T11, T12) → F15_IN_AAA(T13, T11, X14)
F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_AAA(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_GAA(x1, x2, x3)  =  F1_IN_GAA(x1)
U1_GAA(x1, x2, x3, x4)  =  U1_GAA(x1, x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x1, x4)
U5_GAA(x1, x2, x3, x4)  =  U5_GAA(x1, x4)
U6_GAA(x1, x2, x3, x4)  =  U6_GAA(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U4_AAA(x1, x2, x3, x4)  =  U4_AAA(x4)
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)
U6_AAA(x1, x2, x3, x4)  =  U6_AAA(x1, x4)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x1, x4)
U3_GAA(x1, x2, x3, x4)  =  U3_GAA(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)
U3_AAA(x1, x2, x3, x4)  =  U3_AAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(38) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 14 less nodes.

(39) Complex Obligation (AND)

(40) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)

We have to consider all (P,R,Pi)-chains

(41) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(42) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_AAA(s(T21), T23, X33) → U5_AAA(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_AAA(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → F15_IN_AAA(T22, T23, X33)
F15_IN_AAA(s(T21), T20, X33) → F15_IN_AAA(T21, T20, X32)

The TRS R consists of the following rules:

f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
F15_IN_AAA(x1, x2, x3)  =  F15_IN_AAA
U5_AAA(x1, x2, x3, x4)  =  U5_AAA(x4)

We have to consider all (P,R,Pi)-chains

(43) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F15_IN_AAAU5_AAA(f15_in_aaa)
U5_AAA(f15_out_aaa(T21)) → F15_IN_AAA
F15_IN_AAAF15_IN_AAA

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(45) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F15_IN_AAAU5_AAA(f15_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

F15_IN_AAAU5_AAA(f15_out_aaa(0))
F15_IN_AAAU5_AAA(U4_aaa(f15_in_aaa))
F15_IN_AAAU5_AAA(U5_aaa(f15_in_aaa))

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U5_AAA(f15_out_aaa(T21)) → F15_IN_AAA
F15_IN_AAAF15_IN_AAA
F15_IN_AAAU5_AAA(f15_out_aaa(0))
F15_IN_AAAU5_AAA(U4_aaa(f15_in_aaa))
F15_IN_AAAU5_AAA(U5_aaa(f15_in_aaa))

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(47) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = F15_IN_AAA evaluates to t =F15_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from F15_IN_AAA to F15_IN_AAA.



(48) FALSE

(49) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)

We have to consider all (P,R,Pi)-chains

(50) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(51) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F1_IN_AAA(s(T13), T15, T16) → U2_AAA(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_AAA(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → F1_IN_AAA(T14, T15, T16)

The TRS R consists of the following rules:

f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
F1_IN_AAA(x1, x2, x3)  =  F1_IN_AAA
U2_AAA(x1, x2, x3, x4)  =  U2_AAA(x4)

We have to consider all (P,R,Pi)-chains

(52) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F1_IN_AAAU2_AAA(f15_in_aaa)
U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(54) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F1_IN_AAAU2_AAA(f15_in_aaa) at position [0] we obtained the following new rules [LPAR04]:

F1_IN_AAAU2_AAA(f15_out_aaa(0))
F1_IN_AAAU2_AAA(U4_aaa(f15_in_aaa))
F1_IN_AAAU2_AAA(U5_aaa(f15_in_aaa))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA
F1_IN_AAAU2_AAA(f15_out_aaa(0))
F1_IN_AAAU2_AAA(U4_aaa(f15_in_aaa))
F1_IN_AAAU2_AAA(U5_aaa(f15_in_aaa))

The TRS R consists of the following rules:

f15_in_aaaf15_out_aaa(0)
f15_in_aaaU4_aaa(f15_in_aaa)
f15_in_aaaU5_aaa(f15_in_aaa)
U4_aaa(f15_out_aaa(T21)) → f15_out_aaa(s(T21))
U5_aaa(f15_out_aaa(T21)) → U6_aaa(T21, f15_in_aaa)
U6_aaa(T21, f15_out_aaa(T22)) → f15_out_aaa(s(T21))

The set Q consists of the following terms:

f15_in_aaa
U4_aaa(x0)
U5_aaa(x0)
U6_aaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(56) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = F1_IN_AAA evaluates to t =F1_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

F1_IN_AAAU2_AAA(f15_out_aaa(0))
with rule F1_IN_AAAU2_AAA(f15_out_aaa(0)) at position [] and matcher [ ]

U2_AAA(f15_out_aaa(0))F1_IN_AAA
with rule U2_AAA(f15_out_aaa(T13)) → F1_IN_AAA

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(57) FALSE

(58) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)

The TRS R consists of the following rules:

f1_in_gaa(0, T4, 0) → f1_out_gaa(0, T4, 0)
f1_in_gaa(s(T13), T11, T12) → U1_gaa(T13, T11, T12, f15_in_gaa(T13, T11, X14))
f15_in_gaa(0, T17, 0) → f15_out_gaa(0, T17, 0)
f15_in_gaa(s(T21), T20, X33) → U4_gaa(T21, T20, X33, f15_in_gaa(T21, T20, X32))
f15_in_gaa(s(T21), T23, X33) → U5_gaa(T21, T23, X33, f15_in_gaa(T21, T23, T22))
U5_gaa(T21, T23, X33, f15_out_gaa(T21, T23, T22)) → U6_gaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
f15_in_aaa(0, T17, 0) → f15_out_aaa(0, T17, 0)
f15_in_aaa(s(T21), T20, X33) → U4_aaa(T21, T20, X33, f15_in_aaa(T21, T20, X32))
f15_in_aaa(s(T21), T23, X33) → U5_aaa(T21, T23, X33, f15_in_aaa(T21, T23, T22))
U5_aaa(T21, T23, X33, f15_out_aaa(T21, T23, T22)) → U6_aaa(T21, T23, X33, f15_in_aaa(T22, T23, X33))
U6_aaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_aaa(s(T21), T23, X33)
U4_aaa(T21, T20, X33, f15_out_aaa(T21, T20, X32)) → f15_out_aaa(s(T21), T20, X33)
U6_gaa(T21, T23, X33, f15_out_aaa(T22, T23, X33)) → f15_out_gaa(s(T21), T23, X33)
U4_gaa(T21, T20, X33, f15_out_gaa(T21, T20, X32)) → f15_out_gaa(s(T21), T20, X33)
U1_gaa(T13, T11, T12, f15_out_gaa(T13, T11, X14)) → f1_out_gaa(s(T13), T11, T12)
f1_in_gaa(s(T13), T15, T16) → U2_gaa(T13, T15, T16, f15_in_gaa(T13, T15, T14))
U2_gaa(T13, T15, T16, f15_out_gaa(T13, T15, T14)) → U3_gaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
f1_in_aaa(0, T4, 0) → f1_out_aaa(0, T4, 0)
f1_in_aaa(s(T13), T11, T12) → U1_aaa(T13, T11, T12, f15_in_aaa(T13, T11, X14))
U1_aaa(T13, T11, T12, f15_out_aaa(T13, T11, X14)) → f1_out_aaa(s(T13), T11, T12)
f1_in_aaa(s(T13), T15, T16) → U2_aaa(T13, T15, T16, f15_in_aaa(T13, T15, T14))
U2_aaa(T13, T15, T16, f15_out_aaa(T13, T15, T14)) → U3_aaa(T13, T15, T16, f1_in_aaa(T14, T15, T16))
U3_aaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_aaa(s(T13), T15, T16)
U3_gaa(T13, T15, T16, f1_out_aaa(T14, T15, T16)) → f1_out_gaa(s(T13), T15, T16)

The argument filtering Pi contains the following mapping:
f1_in_gaa(x1, x2, x3)  =  f1_in_gaa(x1)
0  =  0
f1_out_gaa(x1, x2, x3)  =  f1_out_gaa(x1)
s(x1)  =  s(x1)
U1_gaa(x1, x2, x3, x4)  =  U1_gaa(x1, x4)
f15_in_gaa(x1, x2, x3)  =  f15_in_gaa(x1)
f15_out_gaa(x1, x2, x3)  =  f15_out_gaa(x1)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
U5_gaa(x1, x2, x3, x4)  =  U5_gaa(x1, x4)
U6_gaa(x1, x2, x3, x4)  =  U6_gaa(x1, x4)
f15_in_aaa(x1, x2, x3)  =  f15_in_aaa
f15_out_aaa(x1, x2, x3)  =  f15_out_aaa(x1)
U4_aaa(x1, x2, x3, x4)  =  U4_aaa(x4)
U5_aaa(x1, x2, x3, x4)  =  U5_aaa(x4)
U6_aaa(x1, x2, x3, x4)  =  U6_aaa(x1, x4)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
U3_gaa(x1, x2, x3, x4)  =  U3_gaa(x1, x4)
f1_in_aaa(x1, x2, x3)  =  f1_in_aaa
f1_out_aaa(x1, x2, x3)  =  f1_out_aaa(x1)
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
U2_aaa(x1, x2, x3, x4)  =  U2_aaa(x4)
U3_aaa(x1, x2, x3, x4)  =  U3_aaa(x1, x4)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(59) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(60) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21), T20, X33) → F15_IN_GAA(T21, T20, X32)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
F15_IN_GAA(x1, x2, x3)  =  F15_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(61) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F15_IN_GAA(s(T21)) → F15_IN_GAA(T21)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(63) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • F15_IN_GAA(s(T21)) → F15_IN_GAA(T21)
    The graph contains the following edges 1 > 1

(64) TRUE