(0) Obligation:
Clauses:
f(0, Y, Z) :- ','(!, eq(Z, 0)).
f(X, Y, Z) :- ','(p(X, P), ','(f(P, Y, U), f(U, Y, Z))).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
f(g,a,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
f(0, Y, Z) :- eq(Z, 0).
f(X, Y, Z) :- ','(p(X, P), ','(f(P, Y, U), f(U, Y, Z))).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
f(g,a,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x5)
U4_GAA(
x1,
x2,
x3,
x4) =
U4_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x5)
U4_GAA(
x1,
x2,
x3,
x4) =
U4_GAA(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x4)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x5)
We have to consider all (P,R,Pi)-chains
(9) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(10) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(X) → U2_GAA(p_in_ga(X))
U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(11) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(F_IN_GAA(x1)) = 2·x1
POL(U1_gaa(x1)) = x1
POL(U2_GAA(x1)) = x1
POL(U2_gaa(x1)) = x1
POL(U3_GAA(x1)) = x1
POL(U3_gaa(x1)) = x1
POL(U4_gaa(x1)) = x1
POL(eq_in_ag(x1)) = 2·x1
POL(eq_out_ag(x1)) = 2·x1
POL(f_in_gaa(x1)) = 2·x1
POL(f_out_gaa(x1)) = 2·x1
POL(p_in_ga(x1)) = 2·x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 1 + 2·x1
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(X) → U2_GAA(p_in_ga(X))
U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(13) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
F_IN_GAA(
X) →
U2_GAA(
p_in_ga(
X)) at position [0] we obtained the following new rules [LPAR04]:
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(15) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GAA(
p_out_ga(
P)) →
U3_GAA(
f_in_gaa(
P)) we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(17) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GAA(
p_out_ga(
P)) →
F_IN_GAA(
P) we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(19) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U2_GAA(
p_out_ga(
0)) →
U3_GAA(
f_in_gaa(
0)) at position [0] we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_in_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_in_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(21) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
p_out_ga(
0)) →
U3_GAA(
U1_gaa(
eq_in_ag(
0))) at position [0,0] we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(23) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
p_out_ga(
0)) →
U3_GAA(
U2_gaa(
p_in_ga(
0))) at position [0,0] we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(25) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
p_out_ga(
0)) →
U3_GAA(
U1_gaa(
eq_out_ag(
0))) at position [0] we obtained the following new rules [LPAR04]:
U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(27) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
U3_GAA(
f_out_gaa(
U)) →
F_IN_GAA(
U) we obtained the following new rules [LPAR04]:
U3_GAA(f_out_gaa(0)) → F_IN_GAA(0)
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))
U3_GAA(f_out_gaa(0)) → F_IN_GAA(0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)
We have to consider all (P,Q,R)-chains.
(29) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_GAA(
p_out_ga(
0)) evaluates to t =
U2_GAA(
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU2_GAA(p_out_ga(0)) →
F_IN_GAA(
0)
with rule
U2_GAA(
p_out_ga(
0)) →
F_IN_GAA(
0) at position [] and matcher [ ]
F_IN_GAA(0) →
U2_GAA(
p_out_ga(
0))
with rule
F_IN_GAA(
0) →
U2_GAA(
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(30) FALSE
(31) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x1,
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x1,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(32) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x1,
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x1,
x4)
(33) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x1,
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x1,
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x1,
x5)
U4_GAA(
x1,
x2,
x3,
x4) =
U4_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x1,
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x1,
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U1_GAA(
x1,
x2,
x3) =
U1_GAA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x1,
x5)
U4_GAA(
x1,
x2,
x3,
x4) =
U4_GAA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(35) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
The TRS R consists of the following rules:
f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)
The argument filtering Pi contains the following mapping:
f_in_gaa(
x1,
x2,
x3) =
f_in_gaa(
x1)
0 =
0
U1_gaa(
x1,
x2,
x3) =
U1_gaa(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
f_out_gaa(
x1,
x2,
x3) =
f_out_gaa(
x1,
x3)
U2_gaa(
x1,
x2,
x3,
x4) =
U2_gaa(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_gaa(
x1,
x2,
x3,
x4,
x5) =
U3_gaa(
x1,
x5)
U4_gaa(
x1,
x2,
x3,
x4) =
U4_gaa(
x1,
x4)
F_IN_GAA(
x1,
x2,
x3) =
F_IN_GAA(
x1)
U2_GAA(
x1,
x2,
x3,
x4) =
U2_GAA(
x1,
x4)
U3_GAA(
x1,
x2,
x3,
x4,
x5) =
U3_GAA(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(X) → U2_GAA(X, p_in_ga(X))
U2_GAA(X, p_out_ga(X, P)) → U3_GAA(X, f_in_gaa(P))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(39) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
F_IN_GAA(
X) →
U2_GAA(
X,
p_in_ga(
X)) at position [1] we obtained the following new rules [LPAR04]:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GAA(X, p_out_ga(X, P)) → U3_GAA(X, f_in_gaa(P))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(41) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GAA(
X,
p_out_ga(
X,
P)) →
U3_GAA(
X,
f_in_gaa(
P)) we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(43) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GAA(
X,
p_out_ga(
X,
P)) →
F_IN_GAA(
P) we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)
(44) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(45) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U3_GAA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(f_out_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(F_IN_GAA(x1)) = | 0 | + | | · | x1 |
POL(U2_GAA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(p_out_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(f_in_gaa(x1)) = | | + | | · | x1 |
POL(eq_in_ag(x1)) = | | + | | · | x1 |
POL(U2_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U4_gaa(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(eq_out_ag(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(47) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(49) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GAA(
X,
f_out_gaa(
P,
U)) →
F_IN_GAA(
U) we obtained the following new rules [LPAR04]:
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(51) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U3_GAA(
X,
f_out_gaa(
P,
U)) →
F_IN_GAA(
U) we obtained the following new rules [LPAR04]:
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(53) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U2_GAA(
0,
p_out_ga(
0,
0)) →
U3_GAA(
0,
f_in_gaa(
0)) at position [1] we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_in_ag(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_in_ag(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(55) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
0,
p_out_ga(
0,
0)) →
U3_GAA(
0,
U1_gaa(
eq_in_ag(
0))) at position [1,0] we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(57) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
0,
p_out_ga(
0,
0)) →
U3_GAA(
0,
U2_gaa(
0,
p_in_ga(
0))) at position [1,1] we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(59) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GAA(
0,
p_out_ga(
0,
0)) →
U3_GAA(
0,
U1_gaa(
eq_out_ag(
0,
0))) at position [1] we obtained the following new rules [LPAR04]:
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(61) ForwardInstantiation (EQUIVALENT transformation)
By forward instantiating [JAR06] the rule
U3_GAA(
0,
f_out_gaa(
x1,
x2)) →
F_IN_GAA(
x2) we obtained the following new rules [LPAR04]:
U3_GAA(0, f_out_gaa(x0, 0)) → F_IN_GAA(0)
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))
U3_GAA(0, f_out_gaa(x0, 0)) → F_IN_GAA(0)
The TRS R consists of the following rules:
f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
The set Q consists of the following terms:
f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)
We have to consider all (P,Q,R)-chains.
(63) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_GAA(
0,
p_out_ga(
0,
0)) evaluates to t =
U2_GAA(
0,
p_out_ga(
0,
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU2_GAA(0, p_out_ga(0, 0)) →
F_IN_GAA(
0)
with rule
U2_GAA(
0,
p_out_ga(
0,
0)) →
F_IN_GAA(
0) at position [] and matcher [ ]
F_IN_GAA(0) →
U2_GAA(
0,
p_out_ga(
0,
0))
with rule
F_IN_GAA(
0) →
U2_GAA(
0,
p_out_ga(
0,
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(64) FALSE