(0) Obligation:

Clauses:

f(0, Y, Z) :- ','(!, eq(Z, 0)).
f(X, Y, Z) :- ','(p(X, P), ','(f(P, Y, U), f(U, Y, Z))).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

f(g,a,a).

(1) CutEliminatorProof (SOUND transformation)

Eliminated all cuts by simply ignoring them[PROLOG].

(2) Obligation:

Clauses:

f(0, Y, Z) :- eq(Z, 0).
f(X, Y, Z) :- ','(p(X, P), ','(f(P, Y, U), f(U, Y, Z))).
p(0, 0).
p(s(X), X).
eq(X, X).

Queries:

f(g,a,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x5)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x5)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x4)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x5)

We have to consider all (P,R,Pi)-chains

(9) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(10) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(X) → U2_GAA(p_in_ga(X))
U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(11) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(0) = 0   
POL(F_IN_GAA(x1)) = 2·x1   
POL(U1_gaa(x1)) = x1   
POL(U2_GAA(x1)) = x1   
POL(U2_gaa(x1)) = x1   
POL(U3_GAA(x1)) = x1   
POL(U3_gaa(x1)) = x1   
POL(U4_gaa(x1)) = x1   
POL(eq_in_ag(x1)) = 2·x1   
POL(eq_out_ag(x1)) = 2·x1   
POL(f_in_gaa(x1)) = 2·x1   
POL(f_out_gaa(x1)) = 2·x1   
POL(p_in_ga(x1)) = 2·x1   
POL(p_out_ga(x1)) = 2·x1   
POL(s(x1)) = 1 + 2·x1   

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(X) → U2_GAA(p_in_ga(X))
U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(13) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F_IN_GAA(X) → U2_GAA(p_in_ga(X)) at position [0] we obtained the following new rules [LPAR04]:

F_IN_GAA(0) → U2_GAA(p_out_ga(0))

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P))
U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(15) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U2_GAA(p_out_ga(P)) → U3_GAA(f_in_gaa(P)) we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
U2_GAA(p_out_ga(P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(17) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U2_GAA(p_out_ga(P)) → F_IN_GAA(P) we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → F_IN_GAA(0)

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(19) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U2_GAA(p_out_ga(0)) → U3_GAA(f_in_gaa(0)) at position [0] we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_in_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_in_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(21) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_in_ag(0))) at position [0,0] we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(23) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_in_ga(0))) at position [0,0] we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(25) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(p_out_ga(0)) → U3_GAA(U1_gaa(eq_out_ag(0))) at position [0] we obtained the following new rules [LPAR04]:

U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(f_out_gaa(U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(27) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GAA(f_out_gaa(U)) → F_IN_GAA(U) we obtained the following new rules [LPAR04]:

U3_GAA(f_out_gaa(0)) → F_IN_GAA(0)

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(p_out_ga(0))
U2_GAA(p_out_ga(0)) → F_IN_GAA(0)
U2_GAA(p_out_ga(0)) → U3_GAA(U2_gaa(p_out_ga(0)))
U2_GAA(p_out_ga(0)) → U3_GAA(f_out_gaa(0))
U3_GAA(f_out_gaa(0)) → F_IN_GAA(0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(p_in_ga(X))
p_in_ga(0) → p_out_ga(0)
U2_gaa(p_out_ga(P)) → U3_gaa(f_in_gaa(P))
U3_gaa(f_out_gaa(U)) → U4_gaa(f_in_gaa(U))
U4_gaa(f_out_gaa(Z)) → f_out_gaa(Z)
eq_in_ag(X) → eq_out_ag(X)
U1_gaa(eq_out_ag(Z)) → f_out_gaa(Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0)
U3_gaa(x0)
U4_gaa(x0)

We have to consider all (P,Q,R)-chains.

(29) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U2_GAA(p_out_ga(0)) evaluates to t =U2_GAA(p_out_ga(0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U2_GAA(p_out_ga(0))F_IN_GAA(0)
with rule U2_GAA(p_out_ga(0)) → F_IN_GAA(0) at position [] and matcher [ ]

F_IN_GAA(0)U2_GAA(p_out_ga(0))
with rule F_IN_GAA(0) → U2_GAA(p_out_ga(0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(30) FALSE

(31) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
f_in: (b,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x1, x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(32) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x1, x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)

(33) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x1, x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x1, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x1, x5)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0, Y, Z) → U1_GAA(Y, Z, eq_in_ag(Z, 0))
F_IN_GAA(0, Y, Z) → EQ_IN_AG(Z, 0)
F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
F_IN_GAA(X, Y, Z) → P_IN_GA(X, P)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_GAA(X, Y, Z, f_in_gaa(U, Y, Z))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x1, x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U1_GAA(x1, x2, x3)  =  U1_GAA(x3)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x1, x4)
P_IN_GA(x1, x2)  =  P_IN_GA(x1)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x1, x5)
U4_GAA(x1, x2, x3, x4)  =  U4_GAA(x1, x4)

We have to consider all (P,R,Pi)-chains

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

F_IN_GAA(X, Y, Z) → U2_GAA(X, Y, Z, p_in_ga(X, P))
U2_GAA(X, Y, Z, p_out_ga(X, P)) → U3_GAA(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_GAA(X, Y, Z, P, f_out_gaa(P, Y, U)) → F_IN_GAA(U, Y, Z)
U2_GAA(X, Y, Z, p_out_ga(X, P)) → F_IN_GAA(P, Y, U)

The TRS R consists of the following rules:

f_in_gaa(0, Y, Z) → U1_gaa(Y, Z, eq_in_ag(Z, 0))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_gaa(Y, Z, eq_out_ag(Z, 0)) → f_out_gaa(0, Y, Z)
f_in_gaa(X, Y, Z) → U2_gaa(X, Y, Z, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_gaa(X, Y, Z, p_out_ga(X, P)) → U3_gaa(X, Y, Z, P, f_in_gaa(P, Y, U))
U3_gaa(X, Y, Z, P, f_out_gaa(P, Y, U)) → U4_gaa(X, Y, Z, f_in_gaa(U, Y, Z))
U4_gaa(X, Y, Z, f_out_gaa(U, Y, Z)) → f_out_gaa(X, Y, Z)

The argument filtering Pi contains the following mapping:
f_in_gaa(x1, x2, x3)  =  f_in_gaa(x1)
0  =  0
U1_gaa(x1, x2, x3)  =  U1_gaa(x3)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
f_out_gaa(x1, x2, x3)  =  f_out_gaa(x1, x3)
U2_gaa(x1, x2, x3, x4)  =  U2_gaa(x1, x4)
p_in_ga(x1, x2)  =  p_in_ga(x1)
p_out_ga(x1, x2)  =  p_out_ga(x1, x2)
s(x1)  =  s(x1)
U3_gaa(x1, x2, x3, x4, x5)  =  U3_gaa(x1, x5)
U4_gaa(x1, x2, x3, x4)  =  U4_gaa(x1, x4)
F_IN_GAA(x1, x2, x3)  =  F_IN_GAA(x1)
U2_GAA(x1, x2, x3, x4)  =  U2_GAA(x1, x4)
U3_GAA(x1, x2, x3, x4, x5)  =  U3_GAA(x1, x5)

We have to consider all (P,R,Pi)-chains

(37) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(38) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(X) → U2_GAA(X, p_in_ga(X))
U2_GAA(X, p_out_ga(X, P)) → U3_GAA(X, f_in_gaa(P))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(39) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule F_IN_GAA(X) → U2_GAA(X, p_in_ga(X)) at position [1] we obtained the following new rules [LPAR04]:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GAA(X, p_out_ga(X, P)) → U3_GAA(X, f_in_gaa(P))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(41) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U2_GAA(X, p_out_ga(X, P)) → U3_GAA(X, f_in_gaa(P)) we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(43) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U2_GAA(X, p_out_ga(X, P)) → F_IN_GAA(P) we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(45) QDPOrderProof (EQUIVALENT transformation)

We use the reduction pair processor [LPAR04].


The following pairs can be oriented strictly and are deleted.


F_IN_GAA(s(x0)) → U2_GAA(s(x0), p_out_ga(s(x0), x0))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:

POL(U3_GAA(x1, x2)) = 0 +
[0,1]
·x1 +
[0,1]
·x2

POL(f_out_gaa(x1, x2)) =
/0\
\0/
+
/00\
\00/
·x1 +
/00\
\10/
·x2

POL(F_IN_GAA(x1)) = 0 +
[1,0]
·x1

POL(0) =
/0\
\0/

POL(U2_GAA(x1, x2)) = 0 +
[0,0]
·x1 +
[0,1]
·x2

POL(p_out_ga(x1, x2)) =
/0\
\0/
+
/10\
\00/
·x1 +
/10\
\10/
·x2

POL(s(x1)) =
/1\
\0/
+
/10\
\00/
·x1

POL(f_in_gaa(x1)) =
/1\
\0/
+
/11\
\00/
·x1

POL(U1_gaa(x1)) =
/0\
\0/
+
/00\
\10/
·x1

POL(eq_in_ag(x1)) =
/0\
\0/
+
/10\
\11/
·x1

POL(U2_gaa(x1, x2)) =
/0\
\0/
+
/01\
\00/
·x1 +
/00\
\00/
·x2

POL(p_in_ga(x1)) =
/0\
\0/
+
/00\
\00/
·x1

POL(U3_gaa(x1, x2)) =
/0\
\0/
+
/01\
\00/
·x1 +
/00\
\00/
·x2

POL(U4_gaa(x1, x2)) =
/0\
\0/
+
/01\
\00/
·x1 +
/01\
\01/
·x2

POL(eq_out_ag(x1, x2)) =
/0\
\0/
+
/10\
\00/
·x1 +
/00\
\00/
·x2

The following usable rules [FROCOS05] were oriented:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → U3_GAA(s(z0), f_in_gaa(z0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(s(z0), p_out_ga(s(z0), z0)) → F_IN_GAA(z0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(47) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 2 less nodes.

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U)
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(49) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U) we obtained the following new rules [LPAR04]:

U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(51) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GAA(X, f_out_gaa(P, U)) → F_IN_GAA(U) we obtained the following new rules [LPAR04]:

U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(53) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_in_gaa(0)) at position [1] we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_in_ag(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_in_ag(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(55) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_in_ag(0))) at position [1,0] we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))

(56) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(57) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_in_ga(0))) at position [1,1] we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))

(58) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(59) Rewriting (EQUIVALENT transformation)

By rewriting [LPAR04] the rule U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U1_gaa(eq_out_ag(0, 0))) at position [1] we obtained the following new rules [LPAR04]:

U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(61) ForwardInstantiation (EQUIVALENT transformation)

By forward instantiating [JAR06] the rule U3_GAA(0, f_out_gaa(x1, x2)) → F_IN_GAA(x2) we obtained the following new rules [LPAR04]:

U3_GAA(0, f_out_gaa(x0, 0)) → F_IN_GAA(0)

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))
U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0)
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, U2_gaa(0, p_out_ga(0, 0)))
U2_GAA(0, p_out_ga(0, 0)) → U3_GAA(0, f_out_gaa(0, 0))
U3_GAA(0, f_out_gaa(x0, 0)) → F_IN_GAA(0)

The TRS R consists of the following rules:

f_in_gaa(0) → U1_gaa(eq_in_ag(0))
eq_in_ag(X) → eq_out_ag(X, X)
U1_gaa(eq_out_ag(Z, 0)) → f_out_gaa(0, Z)
f_in_gaa(X) → U2_gaa(X, p_in_ga(X))
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
U2_gaa(X, p_out_ga(X, P)) → U3_gaa(X, f_in_gaa(P))
U3_gaa(X, f_out_gaa(P, U)) → U4_gaa(X, f_in_gaa(U))
U4_gaa(X, f_out_gaa(U, Z)) → f_out_gaa(X, Z)

The set Q consists of the following terms:

f_in_gaa(x0)
eq_in_ag(x0)
U1_gaa(x0)
p_in_ga(x0)
U2_gaa(x0, x1)
U3_gaa(x0, x1)
U4_gaa(x0, x1)

We have to consider all (P,Q,R)-chains.

(63) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U2_GAA(0, p_out_ga(0, 0)) evaluates to t =U2_GAA(0, p_out_ga(0, 0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U2_GAA(0, p_out_ga(0, 0))F_IN_GAA(0)
with rule U2_GAA(0, p_out_ga(0, 0)) → F_IN_GAA(0) at position [] and matcher [ ]

F_IN_GAA(0)U2_GAA(0, p_out_ga(0, 0))
with rule F_IN_GAA(0) → U2_GAA(0, p_out_ga(0, 0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(64) FALSE