(0) Obligation:
Clauses:
fold(X, [], Z) :- ','(!, eq(X, Z)).
fold(X, Y, Z) :- ','(head(Y, H), ','(tail(Y, T), ','(myop(X, H, V), fold(V, T, Z)))).
myop(a, b, c).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).
Queries:
fold(g,g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
fold(X, [], Z) :- eq(X, Z).
fold(X, Y, Z) :- ','(head(Y, H), ','(tail(Y, T), ','(myop(X, H, V), fold(V, T, Z)))).
myop(a, b, c).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).
Queries:
fold(g,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fold_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x1,
x2,
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x1,
x2,
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, [], Z) → U1_GGA(X, Z, eq_in_ga(X, Z))
FOLD_IN_GGA(X, [], Z) → EQ_IN_GA(X, Z)
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
FOLD_IN_GGA(X, Y, Z) → HEAD_IN_GA(Y, H)
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → TAIL_IN_GA(Y, T)
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → MYOP_IN_GAA(X, H, V)
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_GGA(X, Y, Z, fold_in_gga(V, T, Z))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x1,
x2,
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x1,
x2,
x5,
x6)
MYOP_IN_GAA(
x1,
x2,
x3) =
MYOP_IN_GAA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, [], Z) → U1_GGA(X, Z, eq_in_ga(X, Z))
FOLD_IN_GGA(X, [], Z) → EQ_IN_GA(X, Z)
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
FOLD_IN_GGA(X, Y, Z) → HEAD_IN_GA(Y, H)
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → TAIL_IN_GA(Y, T)
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → MYOP_IN_GAA(X, H, V)
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_GGA(X, Y, Z, fold_in_gga(V, T, Z))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x1,
x2,
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x1,
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x1,
x2,
x5,
x6)
MYOP_IN_GAA(
x1,
x2,
x3) =
MYOP_IN_GAA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x1,
x2,
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x1,
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x1,
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x1,
x2,
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x2,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x1,
x2,
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x1,
x2,
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x1,
x2,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
The argument filtering Pi contains the following mapping:
[] =
[]
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
.(
x1,
x2) =
.(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x1,
x2,
x3)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x2,
x5)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x1,
x2,
x5,
x6)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y) → U2_GGA(X, Y, head_in_ga(Y))
U2_GGA(X, Y, head_out_ga(Y)) → U3_GGA(X, Y, tail_in_ga(Y))
U3_GGA(X, Y, tail_out_ga(Y, T)) → U4_GGA(X, Y, T, myop_in_gaa(X))
U4_GGA(X, Y, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T)
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga([])
head_in_ga(.(H, X2)) → head_out_ga(.(H, X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(X3, T)) → tail_out_ga(.(X3, T), T)
myop_in_gaa(a) → myop_out_gaa(a, b, c)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
myop_in_gaa(x0)
We have to consider all (P,Q,R)-chains.
(13) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
fold_in: (b,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(14) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
(15) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, [], Z) → U1_GGA(X, Z, eq_in_ga(X, Z))
FOLD_IN_GGA(X, [], Z) → EQ_IN_GA(X, Z)
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
FOLD_IN_GGA(X, Y, Z) → HEAD_IN_GA(Y, H)
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → TAIL_IN_GA(Y, T)
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → MYOP_IN_GAA(X, H, V)
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_GGA(X, Y, Z, fold_in_gga(V, T, Z))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x5,
x6)
MYOP_IN_GAA(
x1,
x2,
x3) =
MYOP_IN_GAA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, [], Z) → U1_GGA(X, Z, eq_in_ga(X, Z))
FOLD_IN_GGA(X, [], Z) → EQ_IN_GA(X, Z)
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
FOLD_IN_GGA(X, Y, Z) → HEAD_IN_GA(Y, H)
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → TAIL_IN_GA(Y, T)
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → MYOP_IN_GAA(X, H, V)
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_GGA(X, Y, Z, fold_in_gga(V, T, Z))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U1_GGA(
x1,
x2,
x3) =
U1_GGA(
x3)
EQ_IN_GA(
x1,
x2) =
EQ_IN_GA(
x1)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x5,
x6)
MYOP_IN_GAA(
x1,
x2,
x3) =
MYOP_IN_GAA(
x1)
U5_GGA(
x1,
x2,
x3,
x4) =
U5_GGA(
x4)
We have to consider all (P,R,Pi)-chains
(17) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 6 less nodes.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
fold_in_gga(X, [], Z) → U1_gga(X, Z, eq_in_ga(X, Z))
eq_in_ga(X, X) → eq_out_ga(X, X)
U1_gga(X, Z, eq_out_ga(X, Z)) → fold_out_gga(X, [], Z)
fold_in_gga(X, Y, Z) → U2_gga(X, Y, Z, head_in_ga(Y, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_gga(X, Y, Z, head_out_ga(Y, H)) → U3_gga(X, Y, Z, H, tail_in_ga(Y, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_gga(X, Y, Z, H, tail_out_ga(Y, T)) → U4_gga(X, Y, Z, H, T, myop_in_gaa(X, H, V))
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
U4_gga(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → U5_gga(X, Y, Z, fold_in_gga(V, T, Z))
U5_gga(X, Y, Z, fold_out_gga(V, T, Z)) → fold_out_gga(X, Y, Z)
The argument filtering Pi contains the following mapping:
fold_in_gga(
x1,
x2,
x3) =
fold_in_gga(
x1,
x2)
[] =
[]
U1_gga(
x1,
x2,
x3) =
U1_gga(
x3)
eq_in_ga(
x1,
x2) =
eq_in_ga(
x1)
eq_out_ga(
x1,
x2) =
eq_out_ga(
x2)
fold_out_gga(
x1,
x2,
x3) =
fold_out_gga(
x3)
U2_gga(
x1,
x2,
x3,
x4) =
U2_gga(
x1,
x2,
x4)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
U3_gga(
x1,
x2,
x3,
x4,
x5) =
U3_gga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U4_gga(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_gga(
x5,
x6)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
U5_gga(
x1,
x2,
x3,
x4) =
U5_gga(
x4)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x5,
x6)
We have to consider all (P,R,Pi)-chains
(19) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y, Z) → U2_GGA(X, Y, Z, head_in_ga(Y, H))
U2_GGA(X, Y, Z, head_out_ga(Y, H)) → U3_GGA(X, Y, Z, H, tail_in_ga(Y, T))
U3_GGA(X, Y, Z, H, tail_out_ga(Y, T)) → U4_GGA(X, Y, Z, H, T, myop_in_gaa(X, H, V))
U4_GGA(X, Y, Z, H, T, myop_out_gaa(X, H, V)) → FOLD_IN_GGA(V, T, Z)
The TRS R consists of the following rules:
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
myop_in_gaa(a, b, c) → myop_out_gaa(a, b, c)
The argument filtering Pi contains the following mapping:
[] =
[]
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
.(
x1,
x2) =
.(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
myop_in_gaa(
x1,
x2,
x3) =
myop_in_gaa(
x1)
a =
a
myop_out_gaa(
x1,
x2,
x3) =
myop_out_gaa(
x2,
x3)
FOLD_IN_GGA(
x1,
x2,
x3) =
FOLD_IN_GGA(
x1,
x2)
U2_GGA(
x1,
x2,
x3,
x4) =
U2_GGA(
x1,
x2,
x4)
U3_GGA(
x1,
x2,
x3,
x4,
x5) =
U3_GGA(
x1,
x5)
U4_GGA(
x1,
x2,
x3,
x4,
x5,
x6) =
U4_GGA(
x5,
x6)
We have to consider all (P,R,Pi)-chains
(21) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y) → U2_GGA(X, Y, head_in_ga(Y))
U2_GGA(X, Y, head_out_ga) → U3_GGA(X, tail_in_ga(Y))
U3_GGA(X, tail_out_ga(T)) → U4_GGA(T, myop_in_gaa(X))
U4_GGA(T, myop_out_gaa(H, V)) → FOLD_IN_GGA(V, T)
The TRS R consists of the following rules:
head_in_ga([]) → head_out_ga
head_in_ga(.(H, X2)) → head_out_ga
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(X3, T)) → tail_out_ga(T)
myop_in_gaa(a) → myop_out_gaa(b, c)
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
myop_in_gaa(x0)
We have to consider all (P,Q,R)-chains.
(23) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
myop_in_gaa(a) → myop_out_gaa(b, c)
tail_in_ga(.(X3, T)) → tail_out_ga(T)
head_in_ga(.(H, X2)) → head_out_ga
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(.(x1, x2)) = 1 + x1 + 2·x2
POL(FOLD_IN_GGA(x1, x2)) = 1 + 2·x1 + 2·x2
POL(U2_GGA(x1, x2, x3)) = 1 + 2·x1 + x2 + x3
POL(U3_GGA(x1, x2)) = x1 + x2
POL(U4_GGA(x1, x2)) = 2·x1 + x2
POL([]) = 1
POL(a) = 1
POL(b) = 0
POL(c) = 0
POL(head_in_ga(x1)) = x1
POL(head_out_ga) = 1
POL(myop_in_gaa(x1)) = 1 + x1
POL(myop_out_gaa(x1, x2)) = 1 + x1 + 2·x2
POL(tail_in_ga(x1)) = 2 + x1
POL(tail_out_ga(x1)) = 1 + 2·x1
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FOLD_IN_GGA(X, Y) → U2_GGA(X, Y, head_in_ga(Y))
U2_GGA(X, Y, head_out_ga) → U3_GGA(X, tail_in_ga(Y))
U3_GGA(X, tail_out_ga(T)) → U4_GGA(T, myop_in_gaa(X))
U4_GGA(T, myop_out_gaa(H, V)) → FOLD_IN_GGA(V, T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
head_in_ga([]) → head_out_ga
The set Q consists of the following terms:
head_in_ga(x0)
tail_in_ga(x0)
myop_in_gaa(x0)
We have to consider all (P,Q,R)-chains.
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 0 SCCs with 4 less nodes.
(26) TRUE