(0) Obligation:
Clauses:
flatten(atom(X), Y) :- ','(!, eq(Y, .(X, []))).
flatten(L, Y) :- ','(head(L, atom(H)), ','(!, ','(eq(Y, .(H, Z)), ','(tail(L, T), flatten(T, Z))))).
flatten(L, X) :- ','(head(L, cons(U, V)), ','(tail(L, W), flatten(cons(U, cons(V, W)), X))).
head(nil, X1).
head(cons(H, X2), H).
tail(nil, nil).
tail(cons(X3, T), T).
eq(X, X).
Queries:
flatten(g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
flatten(atom(X), Y) :- eq(Y, .(X, [])).
flatten(L, Y) :- ','(head(L, atom(H)), ','(eq(Y, .(H, Z)), ','(tail(L, T), flatten(T, Z)))).
flatten(L, X) :- ','(head(L, cons(U, V)), ','(tail(L, W), flatten(cons(U, cons(V, W)), X))).
head(nil, X1).
head(cons(H, X2), H).
tail(nil, nil).
tail(cons(X3, T), T).
eq(X, X).
Queries:
flatten(g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatten_in: (b,f) (f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(atom(X), Y) → U1_GA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_GA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
FLATTEN_IN_GA(L, Y) → HEAD_IN_GG(L, atom(H))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_GA(L, T)
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → U5_GA(L, Y, flatten_in_ga(T, Z))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
FLATTEN_IN_GA(L, X) → U6_GA(L, X, head_in_ga(L, cons(U, V)))
FLATTEN_IN_GA(L, X) → HEAD_IN_GA(L, cons(U, V))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → U7_GA(L, X, U, V, tail_in_ga(L, W))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → TAIL_IN_GA(L, W)
U7_GA(L, X, U, V, tail_out_ga(L, W)) → U8_GA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_GA(L, X, U, V, tail_out_ga(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
FLATTEN_IN_AA(atom(X), Y) → U1_AA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_AA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
FLATTEN_IN_AA(L, Y) → HEAD_IN_AG(L, atom(H))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_AA(L, T)
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → U5_AA(L, Y, flatten_in_aa(T, Z))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
FLATTEN_IN_AA(L, X) → HEAD_IN_AA(L, cons(U, V))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → TAIL_IN_AA(L, W)
U7_AA(L, X, U, V, tail_out_aa(L, W)) → U8_AA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HEAD_IN_GG(
x1,
x2) =
HEAD_IN_GG(
x1,
x2)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GA(
x1,
x2,
x3) =
U5_GA(
x3)
U6_GA(
x1,
x2,
x3) =
U6_GA(
x1,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4,
x5) =
U7_GA(
x5)
U8_GA(
x1,
x2,
x3) =
U8_GA(
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U1_AA(
x1,
x2,
x3) =
U1_AA(
x3)
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
HEAD_IN_AG(
x1,
x2) =
HEAD_IN_AG(
x2)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
TAIL_IN_AA(
x1,
x2) =
TAIL_IN_AA
U5_AA(
x1,
x2,
x3) =
U5_AA(
x3)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
HEAD_IN_AA(
x1,
x2) =
HEAD_IN_AA
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
U8_AA(
x1,
x2,
x3) =
U8_AA(
x3)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(atom(X), Y) → U1_GA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_GA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
FLATTEN_IN_GA(L, Y) → HEAD_IN_GG(L, atom(H))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_GA(L, T)
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → U5_GA(L, Y, flatten_in_ga(T, Z))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
FLATTEN_IN_GA(L, X) → U6_GA(L, X, head_in_ga(L, cons(U, V)))
FLATTEN_IN_GA(L, X) → HEAD_IN_GA(L, cons(U, V))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → U7_GA(L, X, U, V, tail_in_ga(L, W))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → TAIL_IN_GA(L, W)
U7_GA(L, X, U, V, tail_out_ga(L, W)) → U8_GA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_GA(L, X, U, V, tail_out_ga(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
FLATTEN_IN_AA(atom(X), Y) → U1_AA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_AA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
FLATTEN_IN_AA(L, Y) → HEAD_IN_AG(L, atom(H))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_AA(L, T)
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → U5_AA(L, Y, flatten_in_aa(T, Z))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
FLATTEN_IN_AA(L, X) → HEAD_IN_AA(L, cons(U, V))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → TAIL_IN_AA(L, W)
U7_AA(L, X, U, V, tail_out_aa(L, W)) → U8_AA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HEAD_IN_GG(
x1,
x2) =
HEAD_IN_GG(
x1,
x2)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GA(
x1,
x2,
x3) =
U5_GA(
x3)
U6_GA(
x1,
x2,
x3) =
U6_GA(
x1,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4,
x5) =
U7_GA(
x5)
U8_GA(
x1,
x2,
x3) =
U8_GA(
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U1_AA(
x1,
x2,
x3) =
U1_AA(
x3)
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
HEAD_IN_AG(
x1,
x2) =
HEAD_IN_AG(
x2)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
TAIL_IN_AA(
x1,
x2) =
TAIL_IN_AA
U5_AA(
x1,
x2,
x3) =
U5_AA(
x3)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
HEAD_IN_AA(
x1,
x2) =
HEAD_IN_AA
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
U8_AA(
x1,
x2,
x3) =
U8_AA(
x3)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 21 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
eq_in_aa(X, X) → eq_out_aa(X, X)
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom
.(
x1,
x2) =
.(
x2)
nil =
nil
cons(
x1,
x2) =
cons(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA → U2_AA(head_in_ag(atom))
U2_AA(head_out_ag) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
The TRS R consists of the following rules:
head_in_ag(X1) → head_out_ag
eq_in_aa → eq_out_aa
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(14) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
FLATTEN_IN_AA →
U2_AA(
head_in_ag(
atom)) at position [0] we obtained the following new rules [LPAR04]:
FLATTEN_IN_AA → U2_AA(head_out_ag)
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
The TRS R consists of the following rules:
head_in_ag(X1) → head_out_ag
eq_in_aa → eq_out_aa
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(16) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(18) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_ag(x0)
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(20) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_AA(
head_out_ag) →
U3_AA(
eq_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(22) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(24) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq_in_aa
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(26) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U3_AA(
eq_out_aa) →
U4_AA(
tail_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
(27) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(28) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
FLATTEN_IN_AA →
U6_AA(
head_in_aa) at position [0] we obtained the following new rules [LPAR04]:
FLATTEN_IN_AA → U6_AA(head_out_aa)
(29) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(30) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(32) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_aa
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(34) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U6_AA(
head_out_aa) →
U7_AA(
tail_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
(35) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(36) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(37) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
R is empty.
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(38) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_aa
(39) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag)
U2_AA(head_out_ag) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(40) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
FLATTEN_IN_AA evaluates to t =
FLATTEN_IN_AAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceFLATTEN_IN_AA →
U6_AA(
head_out_aa)
with rule
FLATTEN_IN_AA →
U6_AA(
head_out_aa) at position [] and matcher [ ]
U6_AA(head_out_aa) →
U7_AA(
tail_out_aa)
with rule
U6_AA(
head_out_aa) →
U7_AA(
tail_out_aa) at position [] and matcher [ ]
U7_AA(tail_out_aa) →
FLATTEN_IN_AAwith rule
U7_AA(
tail_out_aa) →
FLATTEN_IN_AANow applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(41) FALSE
(42) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
We have to consider all (P,R,Pi)-chains
(43) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(44) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
The TRS R consists of the following rules:
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
eq_in_aa(X, X) → eq_out_aa(X, X)
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom
.(
x1,
x2) =
.(
x2)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg
cons(
x1,
x2) =
cons(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x5)
We have to consider all (P,R,Pi)-chains
(45) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(46) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U2_GA(L, head_out_gg) → U3_GA(L, eq_in_aa)
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
The TRS R consists of the following rules:
head_in_gg(nil, X1) → head_out_gg
head_in_gg(cons(H, X2), H) → head_out_gg
eq_in_aa → eq_out_aa
tail_in_ga(nil) → tail_out_ga(nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(T)
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(47) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
tail_in_ga(cons(X3, T)) → tail_out_ga(T)
head_in_gg(cons(H, X2), H) → head_out_gg
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(FLATTEN_IN_GA(x1)) = 2·x1
POL(U2_GA(x1, x2)) = x1 + x2
POL(U3_GA(x1, x2)) = x1 + 2·x2
POL(U4_GA(x1)) = x1
POL(atom) = 0
POL(cons(x1, x2)) = 1 + x1 + 2·x2
POL(eq_in_aa) = 0
POL(eq_out_aa) = 0
POL(head_in_gg(x1, x2)) = x1 + x2
POL(head_out_gg) = 0
POL(nil) = 0
POL(tail_in_ga(x1)) = x1
POL(tail_out_ga(x1)) = 2·x1
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U2_GA(L, head_out_gg) → U3_GA(L, eq_in_aa)
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
eq_in_aa → eq_out_aa
head_in_gg(nil, X1) → head_out_gg
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(49) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GA(
L,
head_out_gg) →
U3_GA(
L,
eq_in_aa) at position [1] we obtained the following new rules [LPAR04]:
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
eq_in_aa → eq_out_aa
head_in_gg(nil, X1) → head_out_gg
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(51) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
head_in_gg(nil, X1) → head_out_gg
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(53) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq_in_aa
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
head_in_gg(nil, X1) → head_out_gg
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(55) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
FLATTEN_IN_GA(
L) →
U2_GA(
L,
head_in_gg(
L,
atom)) at position [1] we obtained the following new rules [LPAR04]:
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
head_in_gg(nil, X1) → head_out_gg
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(57) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(59) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_gg(x0, x1)
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(tail_in_ga(L))
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(61) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U3_GA(
L,
eq_out_aa) →
U4_GA(
tail_in_ga(
L)) at position [0] we obtained the following new rules [LPAR04]:
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(63) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(65) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(tail_out_ga(T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(67) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GA(
tail_out_ga(
T)) →
FLATTEN_IN_GA(
T) we obtained the following new rules [LPAR04]:
U4_GA(tail_out_ga(nil)) → FLATTEN_IN_GA(nil)
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(L, head_out_gg) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
U4_GA(tail_out_ga(nil)) → FLATTEN_IN_GA(nil)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(69) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GA(
L,
head_out_gg) →
U3_GA(
L,
eq_out_aa) we obtained the following new rules [LPAR04]:
U2_GA(nil, head_out_gg) → U3_GA(nil, eq_out_aa)
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg)
U3_GA(nil, eq_out_aa) → U4_GA(tail_out_ga(nil))
U4_GA(tail_out_ga(nil)) → FLATTEN_IN_GA(nil)
U2_GA(nil, head_out_gg) → U3_GA(nil, eq_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(71) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_GA(
nil,
head_out_gg) evaluates to t =
U2_GA(
nil,
head_out_gg)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU2_GA(nil, head_out_gg) →
U3_GA(
nil,
eq_out_aa)
with rule
U2_GA(
nil,
head_out_gg) →
U3_GA(
nil,
eq_out_aa) at position [] and matcher [ ]
U3_GA(nil, eq_out_aa) →
U4_GA(
tail_out_ga(
nil))
with rule
U3_GA(
nil,
eq_out_aa) →
U4_GA(
tail_out_ga(
nil)) at position [] and matcher [ ]
U4_GA(tail_out_ga(nil)) →
FLATTEN_IN_GA(
nil)
with rule
U4_GA(
tail_out_ga(
nil)) →
FLATTEN_IN_GA(
nil) at position [] and matcher [ ]
FLATTEN_IN_GA(nil) →
U2_GA(
nil,
head_out_gg)
with rule
FLATTEN_IN_GA(
nil) →
U2_GA(
nil,
head_out_gg)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(72) FALSE
(73) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
flatten_in: (b,f) (f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(74) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
(75) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(atom(X), Y) → U1_GA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_GA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
FLATTEN_IN_GA(L, Y) → HEAD_IN_GG(L, atom(H))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_GA(L, T)
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → U5_GA(L, Y, flatten_in_ga(T, Z))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
FLATTEN_IN_GA(L, X) → U6_GA(L, X, head_in_ga(L, cons(U, V)))
FLATTEN_IN_GA(L, X) → HEAD_IN_GA(L, cons(U, V))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → U7_GA(L, X, U, V, tail_in_ga(L, W))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → TAIL_IN_GA(L, W)
U7_GA(L, X, U, V, tail_out_ga(L, W)) → U8_GA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_GA(L, X, U, V, tail_out_ga(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
FLATTEN_IN_AA(atom(X), Y) → U1_AA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_AA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
FLATTEN_IN_AA(L, Y) → HEAD_IN_AG(L, atom(H))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_AA(L, T)
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → U5_AA(L, Y, flatten_in_aa(T, Z))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
FLATTEN_IN_AA(L, X) → HEAD_IN_AA(L, cons(U, V))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → TAIL_IN_AA(L, W)
U7_AA(L, X, U, V, tail_out_aa(L, W)) → U8_AA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HEAD_IN_GG(
x1,
x2) =
HEAD_IN_GG(
x1,
x2)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GA(
x1,
x2,
x3) =
U5_GA(
x1,
x3)
U6_GA(
x1,
x2,
x3) =
U6_GA(
x1,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4,
x5) =
U7_GA(
x1,
x5)
U8_GA(
x1,
x2,
x3) =
U8_GA(
x1,
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U1_AA(
x1,
x2,
x3) =
U1_AA(
x3)
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
HEAD_IN_AG(
x1,
x2) =
HEAD_IN_AG(
x2)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
TAIL_IN_AA(
x1,
x2) =
TAIL_IN_AA
U5_AA(
x1,
x2,
x3) =
U5_AA(
x3)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
HEAD_IN_AA(
x1,
x2) =
HEAD_IN_AA
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
U8_AA(
x1,
x2,
x3) =
U8_AA(
x3)
We have to consider all (P,R,Pi)-chains
(76) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(atom(X), Y) → U1_GA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_GA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
FLATTEN_IN_GA(L, Y) → HEAD_IN_GG(L, atom(H))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_GA(L, T)
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → U5_GA(L, Y, flatten_in_ga(T, Z))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
FLATTEN_IN_GA(L, X) → U6_GA(L, X, head_in_ga(L, cons(U, V)))
FLATTEN_IN_GA(L, X) → HEAD_IN_GA(L, cons(U, V))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → U7_GA(L, X, U, V, tail_in_ga(L, W))
U6_GA(L, X, head_out_ga(L, cons(U, V))) → TAIL_IN_GA(L, W)
U7_GA(L, X, U, V, tail_out_ga(L, W)) → U8_GA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_GA(L, X, U, V, tail_out_ga(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
FLATTEN_IN_AA(atom(X), Y) → U1_AA(X, Y, eq_in_ag(Y, .(X, [])))
FLATTEN_IN_AA(atom(X), Y) → EQ_IN_AG(Y, .(X, []))
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
FLATTEN_IN_AA(L, Y) → HEAD_IN_AG(L, atom(H))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → EQ_IN_AA(Y, .(H, Z))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → TAIL_IN_AA(L, T)
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → U5_AA(L, Y, flatten_in_aa(T, Z))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
FLATTEN_IN_AA(L, X) → HEAD_IN_AA(L, cons(U, V))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → TAIL_IN_AA(L, W)
U7_AA(L, X, U, V, tail_out_aa(L, W)) → U8_AA(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U1_GA(
x1,
x2,
x3) =
U1_GA(
x3)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
HEAD_IN_GG(
x1,
x2) =
HEAD_IN_GG(
x1,
x2)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x5)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_GA(
x1,
x2,
x3) =
U5_GA(
x1,
x3)
U6_GA(
x1,
x2,
x3) =
U6_GA(
x1,
x3)
HEAD_IN_GA(
x1,
x2) =
HEAD_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4,
x5) =
U7_GA(
x1,
x5)
U8_GA(
x1,
x2,
x3) =
U8_GA(
x1,
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U1_AA(
x1,
x2,
x3) =
U1_AA(
x3)
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
HEAD_IN_AG(
x1,
x2) =
HEAD_IN_AG(
x2)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
TAIL_IN_AA(
x1,
x2) =
TAIL_IN_AA
U5_AA(
x1,
x2,
x3) =
U5_AA(
x3)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
HEAD_IN_AA(
x1,
x2) =
HEAD_IN_AA
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
U8_AA(
x1,
x2,
x3) =
U8_AA(
x3)
We have to consider all (P,R,Pi)-chains
(77) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 21 less nodes.
(78) Complex Obligation (AND)
(79) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
We have to consider all (P,R,Pi)-chains
(80) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(81) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA(L, Y) → U2_AA(L, Y, head_in_ag(L, atom(H)))
U2_AA(L, Y, head_out_ag(L, atom(H))) → U3_AA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_AA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_AA(L, Y, H, Z, tail_in_aa(L, T))
U4_AA(L, Y, H, Z, tail_out_aa(L, T)) → FLATTEN_IN_AA(T, Z)
FLATTEN_IN_AA(L, X) → U6_AA(L, X, head_in_aa(L, cons(U, V)))
U6_AA(L, X, head_out_aa(L, cons(U, V))) → U7_AA(L, X, U, V, tail_in_aa(L, W))
U7_AA(L, X, U, V, tail_out_aa(L, W)) → FLATTEN_IN_AA(cons(U, cons(V, W)), X)
The TRS R consists of the following rules:
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
eq_in_aa(X, X) → eq_out_aa(X, X)
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom
.(
x1,
x2) =
.(
x2)
nil =
nil
cons(
x1,
x2) =
cons(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
FLATTEN_IN_AA(
x1,
x2) =
FLATTEN_IN_AA
U2_AA(
x1,
x2,
x3) =
U2_AA(
x3)
U3_AA(
x1,
x2,
x3,
x4) =
U3_AA(
x4)
U4_AA(
x1,
x2,
x3,
x4,
x5) =
U4_AA(
x5)
U6_AA(
x1,
x2,
x3) =
U6_AA(
x3)
U7_AA(
x1,
x2,
x3,
x4,
x5) =
U7_AA(
x5)
We have to consider all (P,R,Pi)-chains
(82) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(83) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_AA → U2_AA(head_in_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
The TRS R consists of the following rules:
head_in_ag(X1) → head_out_ag(X1)
eq_in_aa → eq_out_aa
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(84) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
FLATTEN_IN_AA →
U2_AA(
head_in_ag(
atom)) at position [0] we obtained the following new rules [LPAR04]:
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
(85) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag(atom)) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
The TRS R consists of the following rules:
head_in_ag(X1) → head_out_ag(X1)
eq_in_aa → eq_out_aa
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(86) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag(atom)) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
head_in_ag(x0)
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(88) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_ag(x0)
(89) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AA(head_out_ag(atom)) → U3_AA(eq_in_aa)
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(90) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_AA(
head_out_ag(
atom)) →
U3_AA(
eq_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
(91) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
eq_in_aa → eq_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(92) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(93) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
eq_in_aa
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(94) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq_in_aa
(95) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_AA(eq_out_aa) → U4_AA(tail_in_aa)
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(96) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U3_AA(
eq_out_aa) →
U4_AA(
tail_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
(97) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U6_AA(head_in_aa)
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(98) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
FLATTEN_IN_AA →
U6_AA(
head_in_aa) at position [0] we obtained the following new rules [LPAR04]:
FLATTEN_IN_AA → U6_AA(head_out_aa)
(99) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
head_in_aa → head_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(100) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(101) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
head_in_aa
We have to consider all (P,Q,R)-chains.
(102) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_aa
(103) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U6_AA(head_out_aa) → U7_AA(tail_in_aa)
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(104) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U6_AA(
head_out_aa) →
U7_AA(
tail_in_aa) at position [0] we obtained the following new rules [LPAR04]:
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
(105) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
The TRS R consists of the following rules:
tail_in_aa → tail_out_aa
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(106) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(107) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
R is empty.
The set Q consists of the following terms:
tail_in_aa
We have to consider all (P,Q,R)-chains.
(108) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_aa
(109) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_AA(tail_out_aa) → FLATTEN_IN_AA
U7_AA(tail_out_aa) → FLATTEN_IN_AA
FLATTEN_IN_AA → U2_AA(head_out_ag(atom))
U2_AA(head_out_ag(atom)) → U3_AA(eq_out_aa)
U3_AA(eq_out_aa) → U4_AA(tail_out_aa)
FLATTEN_IN_AA → U6_AA(head_out_aa)
U6_AA(head_out_aa) → U7_AA(tail_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(110) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
FLATTEN_IN_AA evaluates to t =
FLATTEN_IN_AAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceFLATTEN_IN_AA →
U6_AA(
head_out_aa)
with rule
FLATTEN_IN_AA →
U6_AA(
head_out_aa) at position [] and matcher [ ]
U6_AA(head_out_aa) →
U7_AA(
tail_out_aa)
with rule
U6_AA(
head_out_aa) →
U7_AA(
tail_out_aa) at position [] and matcher [ ]
U7_AA(tail_out_aa) →
FLATTEN_IN_AAwith rule
U7_AA(
tail_out_aa) →
FLATTEN_IN_AANow applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(111) FALSE
(112) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
The TRS R consists of the following rules:
flatten_in_ga(atom(X), Y) → U1_ga(X, Y, eq_in_ag(Y, .(X, [])))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_ga(atom(X), Y)
flatten_in_ga(L, Y) → U2_ga(L, Y, head_in_gg(L, atom(H)))
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
U2_ga(L, Y, head_out_gg(L, atom(H))) → U3_ga(L, Y, H, eq_in_aa(Y, .(H, Z)))
eq_in_aa(X, X) → eq_out_aa(X, X)
U3_ga(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_ga(L, Y, H, Z, tail_in_ga(L, T))
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
U4_ga(L, Y, H, Z, tail_out_ga(L, T)) → U5_ga(L, Y, flatten_in_ga(T, Z))
flatten_in_ga(L, X) → U6_ga(L, X, head_in_ga(L, cons(U, V)))
head_in_ga(nil, X1) → head_out_ga(nil, X1)
head_in_ga(cons(H, X2), H) → head_out_ga(cons(H, X2), H)
U6_ga(L, X, head_out_ga(L, cons(U, V))) → U7_ga(L, X, U, V, tail_in_ga(L, W))
U7_ga(L, X, U, V, tail_out_ga(L, W)) → U8_ga(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
flatten_in_aa(atom(X), Y) → U1_aa(X, Y, eq_in_ag(Y, .(X, [])))
U1_aa(X, Y, eq_out_ag(Y, .(X, []))) → flatten_out_aa(atom(X), Y)
flatten_in_aa(L, Y) → U2_aa(L, Y, head_in_ag(L, atom(H)))
head_in_ag(nil, X1) → head_out_ag(nil, X1)
head_in_ag(cons(H, X2), H) → head_out_ag(cons(H, X2), H)
U2_aa(L, Y, head_out_ag(L, atom(H))) → U3_aa(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_aa(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_aa(L, Y, H, Z, tail_in_aa(L, T))
tail_in_aa(nil, nil) → tail_out_aa(nil, nil)
tail_in_aa(cons(X3, T), T) → tail_out_aa(cons(X3, T), T)
U4_aa(L, Y, H, Z, tail_out_aa(L, T)) → U5_aa(L, Y, flatten_in_aa(T, Z))
flatten_in_aa(L, X) → U6_aa(L, X, head_in_aa(L, cons(U, V)))
head_in_aa(nil, X1) → head_out_aa(nil, X1)
head_in_aa(cons(H, X2), H) → head_out_aa(cons(H, X2), H)
U6_aa(L, X, head_out_aa(L, cons(U, V))) → U7_aa(L, X, U, V, tail_in_aa(L, W))
U7_aa(L, X, U, V, tail_out_aa(L, W)) → U8_aa(L, X, flatten_in_aa(cons(U, cons(V, W)), X))
U8_aa(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_aa(L, X)
U5_aa(L, Y, flatten_out_aa(T, Z)) → flatten_out_aa(L, Y)
U8_ga(L, X, flatten_out_aa(cons(U, cons(V, W)), X)) → flatten_out_ga(L, X)
U5_ga(L, Y, flatten_out_ga(T, Z)) → flatten_out_ga(L, Y)
The argument filtering Pi contains the following mapping:
flatten_in_ga(
x1,
x2) =
flatten_in_ga(
x1)
atom(
x1) =
atom
U1_ga(
x1,
x2,
x3) =
U1_ga(
x3)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
.(
x1,
x2) =
.(
x2)
[] =
[]
flatten_out_ga(
x1,
x2) =
flatten_out_ga(
x1)
U2_ga(
x1,
x2,
x3) =
U2_ga(
x1,
x3)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
U3_ga(
x1,
x2,
x3,
x4) =
U3_ga(
x1,
x4)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
U4_ga(
x1,
x2,
x3,
x4,
x5) =
U4_ga(
x1,
x5)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_ga(
x1,
x2,
x3) =
U5_ga(
x1,
x3)
U6_ga(
x1,
x2,
x3) =
U6_ga(
x1,
x3)
head_in_ga(
x1,
x2) =
head_in_ga(
x1)
head_out_ga(
x1,
x2) =
head_out_ga(
x1)
U7_ga(
x1,
x2,
x3,
x4,
x5) =
U7_ga(
x1,
x5)
U8_ga(
x1,
x2,
x3) =
U8_ga(
x1,
x3)
flatten_in_aa(
x1,
x2) =
flatten_in_aa
U1_aa(
x1,
x2,
x3) =
U1_aa(
x3)
flatten_out_aa(
x1,
x2) =
flatten_out_aa
U2_aa(
x1,
x2,
x3) =
U2_aa(
x3)
head_in_ag(
x1,
x2) =
head_in_ag(
x2)
head_out_ag(
x1,
x2) =
head_out_ag(
x2)
U3_aa(
x1,
x2,
x3,
x4) =
U3_aa(
x4)
U4_aa(
x1,
x2,
x3,
x4,
x5) =
U4_aa(
x5)
tail_in_aa(
x1,
x2) =
tail_in_aa
tail_out_aa(
x1,
x2) =
tail_out_aa
U5_aa(
x1,
x2,
x3) =
U5_aa(
x3)
U6_aa(
x1,
x2,
x3) =
U6_aa(
x3)
head_in_aa(
x1,
x2) =
head_in_aa
head_out_aa(
x1,
x2) =
head_out_aa
U7_aa(
x1,
x2,
x3,
x4,
x5) =
U7_aa(
x5)
U8_aa(
x1,
x2,
x3) =
U8_aa(
x3)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(113) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(114) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L, Y) → U2_GA(L, Y, head_in_gg(L, atom(H)))
U2_GA(L, Y, head_out_gg(L, atom(H))) → U3_GA(L, Y, H, eq_in_aa(Y, .(H, Z)))
U3_GA(L, Y, H, eq_out_aa(Y, .(H, Z))) → U4_GA(L, Y, H, Z, tail_in_ga(L, T))
U4_GA(L, Y, H, Z, tail_out_ga(L, T)) → FLATTEN_IN_GA(T, Z)
The TRS R consists of the following rules:
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
eq_in_aa(X, X) → eq_out_aa(X, X)
tail_in_ga(nil, nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T), T) → tail_out_ga(cons(X3, T), T)
The argument filtering Pi contains the following mapping:
atom(
x1) =
atom
.(
x1,
x2) =
.(
x2)
head_in_gg(
x1,
x2) =
head_in_gg(
x1,
x2)
nil =
nil
head_out_gg(
x1,
x2) =
head_out_gg(
x1,
x2)
cons(
x1,
x2) =
cons(
x1,
x2)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
FLATTEN_IN_GA(
x1,
x2) =
FLATTEN_IN_GA(
x1)
U2_GA(
x1,
x2,
x3) =
U2_GA(
x1,
x3)
U3_GA(
x1,
x2,
x3,
x4) =
U3_GA(
x1,
x4)
U4_GA(
x1,
x2,
x3,
x4,
x5) =
U4_GA(
x1,
x5)
We have to consider all (P,R,Pi)-chains
(115) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(116) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_in_aa)
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
The TRS R consists of the following rules:
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
eq_in_aa → eq_out_aa
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(117) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
U2_GA(
L,
head_out_gg(
L,
atom)) →
U3_GA(
L,
eq_in_aa) at position [1] we obtained the following new rules [LPAR04]:
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
(118) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
eq_in_aa → eq_out_aa
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(119) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(120) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
The set Q consists of the following terms:
head_in_gg(x0, x1)
eq_in_aa
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(121) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
eq_in_aa
(122) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(L) → U2_GA(L, head_in_gg(L, atom))
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(123) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
FLATTEN_IN_GA(
L) →
U2_GA(
L,
head_in_gg(
L,
atom)) at position [1] we obtained the following new rules [LPAR04]:
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
(124) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
head_in_gg(nil, X1) → head_out_gg(nil, X1)
head_in_gg(cons(H, X2), H) → head_out_gg(cons(H, X2), H)
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(125) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(126) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
The set Q consists of the following terms:
head_in_gg(x0, x1)
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(127) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
head_in_gg(x0, x1)
(128) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U3_GA(L, eq_out_aa) → U4_GA(L, tail_in_ga(L))
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(129) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U3_GA(
L,
eq_out_aa) →
U4_GA(
L,
tail_in_ga(
L)) at position [1] we obtained the following new rules [LPAR04]:
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U3_GA(cons(x0, x1), eq_out_aa) → U4_GA(cons(x0, x1), tail_out_ga(cons(x0, x1), x1))
(130) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U3_GA(cons(x0, x1), eq_out_aa) → U4_GA(cons(x0, x1), tail_out_ga(cons(x0, x1), x1))
The TRS R consists of the following rules:
tail_in_ga(nil) → tail_out_ga(nil, nil)
tail_in_ga(cons(X3, T)) → tail_out_ga(cons(X3, T), T)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(131) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(132) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U3_GA(cons(x0, x1), eq_out_aa) → U4_GA(cons(x0, x1), tail_out_ga(cons(x0, x1), x1))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(133) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(134) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U3_GA(cons(x0, x1), eq_out_aa) → U4_GA(cons(x0, x1), tail_out_ga(cons(x0, x1), x1))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(135) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U3_GA(cons(x0, x1), eq_out_aa) → U4_GA(cons(x0, x1), tail_out_ga(cons(x0, x1), x1))
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(FLATTEN_IN_GA(x1)) = x1
POL(U2_GA(x1, x2)) = x1
POL(U3_GA(x1, x2)) = x1
POL(U4_GA(x1, x2)) = x2
POL(atom) = 1
POL(cons(x1, x2)) = 1 + x1 + x2
POL(eq_out_aa) = 0
POL(head_out_gg(x1, x2)) = 0
POL(nil) = 0
POL(tail_out_ga(x1, x2)) = x2
The following usable rules [FROCOS05] were oriented:
none
(136) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(137) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
FLATTEN_IN_GA(cons(atom, x1)) → U2_GA(cons(atom, x1), head_out_gg(cons(atom, x1), atom))
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(U4_GA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(tail_out_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(FLATTEN_IN_GA(x1)) = | 0 | + | | · | x1 |
POL(U2_GA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(head_out_gg(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
POL(U3_GA(x1, x2)) = | 0 | + | | · | x1 | + | | · | x2 |
POL(cons(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
none
(138) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_GA(L, tail_out_ga(L, T)) → FLATTEN_IN_GA(T)
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(139) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GA(
L,
tail_out_ga(
L,
T)) →
FLATTEN_IN_GA(
T) we obtained the following new rules [LPAR04]:
U4_GA(nil, tail_out_ga(nil, nil)) → FLATTEN_IN_GA(nil)
(140) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U4_GA(nil, tail_out_ga(nil, nil)) → FLATTEN_IN_GA(nil)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(141) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_GA(
L,
tail_out_ga(
L,
T)) →
FLATTEN_IN_GA(
T) we obtained the following new rules [LPAR04]:
U4_GA(nil, tail_out_ga(nil, nil)) → FLATTEN_IN_GA(nil)
(142) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_GA(L, head_out_gg(L, atom)) → U3_GA(L, eq_out_aa)
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U4_GA(nil, tail_out_ga(nil, nil)) → FLATTEN_IN_GA(nil)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(143) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_GA(
L,
head_out_gg(
L,
atom)) →
U3_GA(
L,
eq_out_aa) we obtained the following new rules [LPAR04]:
U2_GA(nil, head_out_gg(nil, atom)) → U3_GA(nil, eq_out_aa)
(144) Obligation:
Q DP problem:
The TRS P consists of the following rules:
FLATTEN_IN_GA(nil) → U2_GA(nil, head_out_gg(nil, atom))
U3_GA(nil, eq_out_aa) → U4_GA(nil, tail_out_ga(nil, nil))
U4_GA(nil, tail_out_ga(nil, nil)) → FLATTEN_IN_GA(nil)
U2_GA(nil, head_out_gg(nil, atom)) → U3_GA(nil, eq_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(145) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_GA(
nil,
head_out_gg(
nil,
atom)) evaluates to t =
U2_GA(
nil,
head_out_gg(
nil,
atom))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU2_GA(nil, head_out_gg(nil, atom)) →
U3_GA(
nil,
eq_out_aa)
with rule
U2_GA(
nil,
head_out_gg(
nil,
atom)) →
U3_GA(
nil,
eq_out_aa) at position [] and matcher [ ]
U3_GA(nil, eq_out_aa) →
U4_GA(
nil,
tail_out_ga(
nil,
nil))
with rule
U3_GA(
nil,
eq_out_aa) →
U4_GA(
nil,
tail_out_ga(
nil,
nil)) at position [] and matcher [ ]
U4_GA(nil, tail_out_ga(nil, nil)) →
FLATTEN_IN_GA(
nil)
with rule
U4_GA(
nil,
tail_out_ga(
nil,
nil)) →
FLATTEN_IN_GA(
nil) at position [] and matcher [ ]
FLATTEN_IN_GA(nil) →
U2_GA(
nil,
head_out_gg(
nil,
atom))
with rule
FLATTEN_IN_GA(
nil) →
U2_GA(
nil,
head_out_gg(
nil,
atom))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(146) FALSE