(0) Obligation:
Clauses:
even(0) :- !.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- !.
odd(N) :- ','(p(N, P), even(P)).
p(0, 0).
p(s(X), X).
Queries:
even(g).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
even1(0).
even1(s(s(0))).
even1(s(0)).
Queries:
even1(g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even1_in_g(0) → even1_out_g(0)
even1_in_g(s(s(0))) → even1_out_g(s(s(0)))
even1_in_g(s(0)) → even1_out_g(s(0))
The argument filtering Pi contains the following mapping:
even1_in_g(
x1) =
even1_in_g(
x1)
0 =
0
even1_out_g(
x1) =
even1_out_g
s(
x1) =
s(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even1_in_g(0) → even1_out_g(0)
even1_in_g(s(s(0))) → even1_out_g(s(s(0)))
even1_in_g(s(0)) → even1_out_g(s(0))
The argument filtering Pi contains the following mapping:
even1_in_g(
x1) =
even1_in_g(
x1)
0 =
0
even1_out_g(
x1) =
even1_out_g
s(
x1) =
s(
x1)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
even1_in_g(0) → even1_out_g(0)
even1_in_g(s(s(0))) → even1_out_g(s(s(0)))
even1_in_g(s(0)) → even1_out_g(s(0))
The argument filtering Pi contains the following mapping:
even1_in_g(
x1) =
even1_in_g(
x1)
0 =
0
even1_out_g(
x1) =
even1_out_g
s(
x1) =
s(
x1)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
P is empty.
The TRS R consists of the following rules:
even1_in_g(0) → even1_out_g(0)
even1_in_g(s(s(0))) → even1_out_g(s(s(0)))
even1_in_g(s(0)) → even1_out_g(s(0))
The argument filtering Pi contains the following mapping:
even1_in_g(
x1) =
even1_in_g(
x1)
0 =
0
even1_out_g(
x1) =
even1_out_g
s(
x1) =
s(
x1)
We have to consider all (P,R,Pi)-chains
(7) PisEmptyProof (EQUIVALENT transformation)
The TRS P is empty. Hence, there is no (P,R,Pi) chain.
(8) TRUE