(0) Obligation:
Clauses:
even(0) :- !.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- !.
odd(s(N)) :- even(P).
p(0, 0).
p(s(X), X).
Queries:
even(g).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
even(0) :- true.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- true.
odd(s(N)) :- even(P).
p(0, 0).
p(s(X), X).
Queries:
even(g).
(3) UndefinedPredicateHandlerProof (SOUND transformation)
Added facts for all undefined predicates [PROLOG].
(4) Obligation:
Clauses:
even(0) :- true.
even(N) :- ','(p(N, P), odd(P)).
odd(s(0)) :- true.
odd(s(N)) :- even(P).
p(0, 0).
p(s(X), X).
true.
Queries:
even(g).
(5) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
even_in: (b) (f)
odd_in: (b) (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(6) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
(7) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(0) → U1_G(true_in_)
EVEN_IN_G(0) → TRUE_IN_
EVEN_IN_G(N) → U2_G(N, p_in_ga(N, P))
EVEN_IN_G(N) → P_IN_GA(N, P)
U2_G(N, p_out_ga(N, P)) → U3_G(N, odd_in_g(P))
U2_G(N, p_out_ga(N, P)) → ODD_IN_G(P)
ODD_IN_G(s(0)) → U4_G(true_in_)
ODD_IN_G(s(0)) → TRUE_IN_
ODD_IN_G(s(N)) → U5_G(N, even_in_a(P))
ODD_IN_G(s(N)) → EVEN_IN_A(P)
EVEN_IN_A(0) → U1_A(true_in_)
EVEN_IN_A(0) → TRUE_IN_
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
EVEN_IN_A(N) → P_IN_AA(N, P)
U2_A(N, p_out_aa(N, P)) → U3_A(N, odd_in_a(P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(0)) → U4_A(true_in_)
ODD_IN_A(s(0)) → TRUE_IN_
ODD_IN_A(s(N)) → U5_A(N, even_in_a(P))
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
TRUE_IN_ =
TRUE_IN_
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
ODD_IN_G(
x1) =
ODD_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U1_A(
x1) =
U1_A(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
P_IN_AA(
x1,
x2) =
P_IN_AA
U3_A(
x1,
x2) =
U3_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
U4_A(
x1) =
U4_A(
x1)
U5_A(
x1,
x2) =
U5_A(
x2)
We have to consider all (P,R,Pi)-chains
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(0) → U1_G(true_in_)
EVEN_IN_G(0) → TRUE_IN_
EVEN_IN_G(N) → U2_G(N, p_in_ga(N, P))
EVEN_IN_G(N) → P_IN_GA(N, P)
U2_G(N, p_out_ga(N, P)) → U3_G(N, odd_in_g(P))
U2_G(N, p_out_ga(N, P)) → ODD_IN_G(P)
ODD_IN_G(s(0)) → U4_G(true_in_)
ODD_IN_G(s(0)) → TRUE_IN_
ODD_IN_G(s(N)) → U5_G(N, even_in_a(P))
ODD_IN_G(s(N)) → EVEN_IN_A(P)
EVEN_IN_A(0) → U1_A(true_in_)
EVEN_IN_A(0) → TRUE_IN_
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
EVEN_IN_A(N) → P_IN_AA(N, P)
U2_A(N, p_out_aa(N, P)) → U3_A(N, odd_in_a(P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(0)) → U4_A(true_in_)
ODD_IN_A(s(0)) → TRUE_IN_
ODD_IN_A(s(N)) → U5_A(N, even_in_a(P))
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
TRUE_IN_ =
TRUE_IN_
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
ODD_IN_G(
x1) =
ODD_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U1_A(
x1) =
U1_A(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
P_IN_AA(
x1,
x2) =
P_IN_AA
U3_A(
x1,
x2) =
U3_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
U4_A(
x1) =
U4_A(
x1)
U5_A(
x1,
x2) =
U5_A(
x2)
We have to consider all (P,R,Pi)-chains
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 17 less nodes.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
We have to consider all (P,R,Pi)-chains
(11) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(12) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
EVEN_IN_A(
x1) =
EVEN_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
We have to consider all (P,R,Pi)-chains
(13) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EVEN_IN_A → U2_A(p_in_aa)
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
The TRS R consists of the following rules:
p_in_aa → p_out_aa
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(15) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
EVEN_IN_A →
U2_A(
p_in_aa) at position [0] we obtained the following new rules [LPAR04]:
EVEN_IN_A → U2_A(p_out_aa)
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
The TRS R consists of the following rules:
p_in_aa → p_out_aa
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
R is empty.
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_aa
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ODD_IN_A evaluates to t =
ODD_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceODD_IN_A →
EVEN_IN_Awith rule
ODD_IN_A →
EVEN_IN_A at position [] and matcher [ ]
EVEN_IN_A →
U2_A(
p_out_aa)
with rule
EVEN_IN_A →
U2_A(
p_out_aa) at position [] and matcher [ ]
U2_A(p_out_aa) →
ODD_IN_Awith rule
U2_A(
p_out_aa) →
ODD_IN_ANow applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(22) FALSE
(23) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
even_in: (b) (f)
odd_in: (b) (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(24) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
(25) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(0) → U1_G(true_in_)
EVEN_IN_G(0) → TRUE_IN_
EVEN_IN_G(N) → U2_G(N, p_in_ga(N, P))
EVEN_IN_G(N) → P_IN_GA(N, P)
U2_G(N, p_out_ga(N, P)) → U3_G(N, odd_in_g(P))
U2_G(N, p_out_ga(N, P)) → ODD_IN_G(P)
ODD_IN_G(s(0)) → U4_G(true_in_)
ODD_IN_G(s(0)) → TRUE_IN_
ODD_IN_G(s(N)) → U5_G(N, even_in_a(P))
ODD_IN_G(s(N)) → EVEN_IN_A(P)
EVEN_IN_A(0) → U1_A(true_in_)
EVEN_IN_A(0) → TRUE_IN_
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
EVEN_IN_A(N) → P_IN_AA(N, P)
U2_A(N, p_out_aa(N, P)) → U3_A(N, odd_in_a(P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(0)) → U4_A(true_in_)
ODD_IN_A(s(0)) → TRUE_IN_
ODD_IN_A(s(N)) → U5_A(N, even_in_a(P))
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
TRUE_IN_ =
TRUE_IN_
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
ODD_IN_G(
x1) =
ODD_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U1_A(
x1) =
U1_A(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
P_IN_AA(
x1,
x2) =
P_IN_AA
U3_A(
x1,
x2) =
U3_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
U4_A(
x1) =
U4_A(
x1)
U5_A(
x1,
x2) =
U5_A(
x2)
We have to consider all (P,R,Pi)-chains
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_G(0) → U1_G(true_in_)
EVEN_IN_G(0) → TRUE_IN_
EVEN_IN_G(N) → U2_G(N, p_in_ga(N, P))
EVEN_IN_G(N) → P_IN_GA(N, P)
U2_G(N, p_out_ga(N, P)) → U3_G(N, odd_in_g(P))
U2_G(N, p_out_ga(N, P)) → ODD_IN_G(P)
ODD_IN_G(s(0)) → U4_G(true_in_)
ODD_IN_G(s(0)) → TRUE_IN_
ODD_IN_G(s(N)) → U5_G(N, even_in_a(P))
ODD_IN_G(s(N)) → EVEN_IN_A(P)
EVEN_IN_A(0) → U1_A(true_in_)
EVEN_IN_A(0) → TRUE_IN_
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
EVEN_IN_A(N) → P_IN_AA(N, P)
U2_A(N, p_out_aa(N, P)) → U3_A(N, odd_in_a(P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(0)) → U4_A(true_in_)
ODD_IN_A(s(0)) → TRUE_IN_
ODD_IN_A(s(N)) → U5_A(N, even_in_a(P))
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_G(
x1) =
EVEN_IN_G(
x1)
U1_G(
x1) =
U1_G(
x1)
TRUE_IN_ =
TRUE_IN_
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
ODD_IN_G(
x1) =
ODD_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U1_A(
x1) =
U1_A(
x1)
U2_A(
x1,
x2) =
U2_A(
x2)
P_IN_AA(
x1,
x2) =
P_IN_AA
U3_A(
x1,
x2) =
U3_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
U4_A(
x1) =
U4_A(
x1)
U5_A(
x1,
x2) =
U5_A(
x2)
We have to consider all (P,R,Pi)-chains
(27) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 17 less nodes.
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
even_in_g(0) → U1_g(true_in_)
true_in_ → true_out_
U1_g(true_out_) → even_out_g(0)
even_in_g(N) → U2_g(N, p_in_ga(N, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(N, p_out_ga(N, P)) → U3_g(N, odd_in_g(P))
odd_in_g(s(0)) → U4_g(true_in_)
U4_g(true_out_) → odd_out_g(s(0))
odd_in_g(s(N)) → U5_g(N, even_in_a(P))
even_in_a(0) → U1_a(true_in_)
U1_a(true_out_) → even_out_a(0)
even_in_a(N) → U2_a(N, p_in_aa(N, P))
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
U2_a(N, p_out_aa(N, P)) → U3_a(N, odd_in_a(P))
odd_in_a(s(0)) → U4_a(true_in_)
U4_a(true_out_) → odd_out_a(s(0))
odd_in_a(s(N)) → U5_a(N, even_in_a(P))
U5_a(N, even_out_a(P)) → odd_out_a(s(N))
U3_a(N, odd_out_a(P)) → even_out_a(N)
U5_g(N, even_out_a(P)) → odd_out_g(s(N))
U3_g(N, odd_out_g(P)) → even_out_g(N)
The argument filtering Pi contains the following mapping:
even_in_g(
x1) =
even_in_g(
x1)
0 =
0
U1_g(
x1) =
U1_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
even_out_g(
x1) =
even_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
odd_in_g(
x1) =
odd_in_g(
x1)
U4_g(
x1) =
U4_g(
x1)
odd_out_g(
x1) =
odd_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
even_in_a(
x1) =
even_in_a
U1_a(
x1) =
U1_a(
x1)
even_out_a(
x1) =
even_out_a
U2_a(
x1,
x2) =
U2_a(
x2)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
U3_a(
x1,
x2) =
U3_a(
x2)
odd_in_a(
x1) =
odd_in_a
U4_a(
x1) =
U4_a(
x1)
odd_out_a(
x1) =
odd_out_a
U5_a(
x1,
x2) =
U5_a(
x2)
EVEN_IN_A(
x1) =
EVEN_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
We have to consider all (P,R,Pi)-chains
(29) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
EVEN_IN_A(N) → U2_A(N, p_in_aa(N, P))
U2_A(N, p_out_aa(N, P)) → ODD_IN_A(P)
ODD_IN_A(s(N)) → EVEN_IN_A(P)
The TRS R consists of the following rules:
p_in_aa(0, 0) → p_out_aa(0, 0)
p_in_aa(s(X), X) → p_out_aa(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
s(
x1) =
s(
x1)
p_in_aa(
x1,
x2) =
p_in_aa
p_out_aa(
x1,
x2) =
p_out_aa
EVEN_IN_A(
x1) =
EVEN_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
ODD_IN_A(
x1) =
ODD_IN_A
We have to consider all (P,R,Pi)-chains
(31) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
EVEN_IN_A → U2_A(p_in_aa)
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
The TRS R consists of the following rules:
p_in_aa → p_out_aa
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(33) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
EVEN_IN_A →
U2_A(
p_in_aa) at position [0] we obtained the following new rules [LPAR04]:
EVEN_IN_A → U2_A(p_out_aa)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
The TRS R consists of the following rules:
p_in_aa → p_out_aa
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(35) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
R is empty.
The set Q consists of the following terms:
p_in_aa
We have to consider all (P,Q,R)-chains.
(37) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_aa
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_A(p_out_aa) → ODD_IN_A
ODD_IN_A → EVEN_IN_A
EVEN_IN_A → U2_A(p_out_aa)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ODD_IN_A evaluates to t =
ODD_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceODD_IN_A →
EVEN_IN_Awith rule
ODD_IN_A →
EVEN_IN_A at position [] and matcher [ ]
EVEN_IN_A →
U2_A(
p_out_aa)
with rule
EVEN_IN_A →
U2_A(
p_out_aa) at position [] and matcher [ ]
U2_A(p_out_aa) →
ODD_IN_Awith rule
U2_A(
p_out_aa) →
ODD_IN_ANow applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(40) FALSE