(0) Obligation:

Clauses:

duplicate([], L) :- ','(!, eq(L, [])).
duplicate(X, .(H, .(H, Z))) :- ','(head(X, H), ','(tail(X, T), duplicate(T, Z))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).

Queries:

duplicate(g,a).

(1) CutEliminatorProof (SOUND transformation)

Eliminated all cuts by simply ignoring them[PROLOG].

(2) Obligation:

Clauses:

duplicate([], L) :- eq(L, []).
duplicate(X, .(H, .(H, Z))) :- ','(head(X, H), ','(tail(X, T), duplicate(T, Z))).
head([], X1).
head(.(H, X2), H).
tail([], []).
tail(.(X3, T), T).
eq(X, X).

Queries:

duplicate(g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([], L) → U1_GA(L, eq_in_ag(L, []))
DUPLICATE_IN_GA([], L) → EQ_IN_AG(L, [])
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → HEAD_IN_GA(X, H)
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U2_GA(X, H, Z, head_out_ga(X, H)) → TAIL_IN_GA(X, T)
U3_GA(X, H, Z, tail_out_ga(X, T)) → U4_GA(X, H, Z, duplicate_in_ga(T, Z))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2)  =  U1_GA(x2)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
HEAD_IN_GA(x1, x2)  =  HEAD_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)
TAIL_IN_GA(x1, x2)  =  TAIL_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([], L) → U1_GA(L, eq_in_ag(L, []))
DUPLICATE_IN_GA([], L) → EQ_IN_AG(L, [])
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → HEAD_IN_GA(X, H)
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U2_GA(X, H, Z, head_out_ga(X, H)) → TAIL_IN_GA(X, T)
U3_GA(X, H, Z, tail_out_ga(X, T)) → U4_GA(X, H, Z, duplicate_in_ga(T, Z))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2)  =  U1_GA(x2)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
HEAD_IN_GA(x1, x2)  =  HEAD_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)
TAIL_IN_GA(x1, x2)  =  TAIL_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)

The argument filtering Pi contains the following mapping:
[]  =  []
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga
.(x1, x2)  =  .(x2)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x2)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x4)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X) → U2_GA(X, head_in_ga(X))
U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X))
U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)

The TRS R consists of the following rules:

head_in_ga([]) → head_out_ga
head_in_ga(.(X2)) → head_out_ga
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(T)) → tail_out_ga(T)

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

No dependency pairs are removed.

The following rules are removed from R:

tail_in_ga(.(T)) → tail_out_ga(T)
head_in_ga(.(X2)) → head_out_ga
Used ordering: POLO with Polynomial interpretation [POLO]:

POL(.(x1)) = 2·x1   
POL(DUPLICATE_IN_GA(x1)) = 2·x1   
POL(U2_GA(x1, x2)) = x1 + x2   
POL(U3_GA(x1)) = x1   
POL([]) = 0   
POL(head_in_ga(x1)) = x1   
POL(head_out_ga) = 0   
POL(tail_in_ga(x1)) = x1   
POL(tail_out_ga(x1)) = 2·x1   

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X) → U2_GA(X, head_in_ga(X))
U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X))
U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([])
head_in_ga([]) → head_out_ga

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(15) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule DUPLICATE_IN_GA(X) → U2_GA(X, head_in_ga(X)) at position [1] we obtained the following new rules [LPAR04]:

DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)

(16) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X))
U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([])
head_in_ga([]) → head_out_ga

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(17) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(18) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X))
U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([])

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(19) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

head_in_ga(x0)

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X))
U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([])

The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(21) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U2_GA(X, head_out_ga) → U3_GA(tail_in_ga(X)) at position [0] we obtained the following new rules [LPAR04]:

U2_GA([], head_out_ga) → U3_GA(tail_out_ga([]))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)
U2_GA([], head_out_ga) → U3_GA(tail_out_ga([]))

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([])

The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(23) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)
U2_GA([], head_out_ga) → U3_GA(tail_out_ga([]))

R is empty.
The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(25) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

tail_in_ga(x0)

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)
U2_GA([], head_out_ga) → U3_GA(tail_out_ga([]))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(27) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GA(tail_out_ga(T)) → DUPLICATE_IN_GA(T) we obtained the following new rules [LPAR04]:

U3_GA(tail_out_ga([])) → DUPLICATE_IN_GA([])

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)
U2_GA([], head_out_ga) → U3_GA(tail_out_ga([]))
U3_GA(tail_out_ga([])) → DUPLICATE_IN_GA([])

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(29) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U2_GA([], head_out_ga) evaluates to t =U2_GA([], head_out_ga)

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U2_GA([], head_out_ga)U3_GA(tail_out_ga([]))
with rule U2_GA([], head_out_ga) → U3_GA(tail_out_ga([])) at position [] and matcher [ ]

U3_GA(tail_out_ga([]))DUPLICATE_IN_GA([])
with rule U3_GA(tail_out_ga([])) → DUPLICATE_IN_GA([]) at position [] and matcher [ ]

DUPLICATE_IN_GA([])U2_GA([], head_out_ga)
with rule DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga)

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(30) FALSE

(31) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
duplicate_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(32) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)

(33) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([], L) → U1_GA(L, eq_in_ag(L, []))
DUPLICATE_IN_GA([], L) → EQ_IN_AG(L, [])
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → HEAD_IN_GA(X, H)
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U2_GA(X, H, Z, head_out_ga(X, H)) → TAIL_IN_GA(X, T)
U3_GA(X, H, Z, tail_out_ga(X, T)) → U4_GA(X, H, Z, duplicate_in_ga(T, Z))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2)  =  U1_GA(x2)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
HEAD_IN_GA(x1, x2)  =  HEAD_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
TAIL_IN_GA(x1, x2)  =  TAIL_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(34) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([], L) → U1_GA(L, eq_in_ag(L, []))
DUPLICATE_IN_GA([], L) → EQ_IN_AG(L, [])
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
DUPLICATE_IN_GA(X, .(H, .(H, Z))) → HEAD_IN_GA(X, H)
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U2_GA(X, H, Z, head_out_ga(X, H)) → TAIL_IN_GA(X, T)
U3_GA(X, H, Z, tail_out_ga(X, T)) → U4_GA(X, H, Z, duplicate_in_ga(T, Z))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U1_GA(x1, x2)  =  U1_GA(x2)
EQ_IN_AG(x1, x2)  =  EQ_IN_AG(x2)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
HEAD_IN_GA(x1, x2)  =  HEAD_IN_GA(x1)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)
TAIL_IN_GA(x1, x2)  =  TAIL_IN_GA(x1)
U4_GA(x1, x2, x3, x4)  =  U4_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(35) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 5 less nodes.

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

duplicate_in_ga([], L) → U1_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U1_ga(L, eq_out_ag(L, [])) → duplicate_out_ga([], L)
duplicate_in_ga(X, .(H, .(H, Z))) → U2_ga(X, H, Z, head_in_ga(X, H))
head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
U2_ga(X, H, Z, head_out_ga(X, H)) → U3_ga(X, H, Z, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)
U3_ga(X, H, Z, tail_out_ga(X, T)) → U4_ga(X, H, Z, duplicate_in_ga(T, Z))
U4_ga(X, H, Z, duplicate_out_ga(T, Z)) → duplicate_out_ga(X, .(H, .(H, Z)))

The argument filtering Pi contains the following mapping:
duplicate_in_ga(x1, x2)  =  duplicate_in_ga(x1)
[]  =  []
U1_ga(x1, x2)  =  U1_ga(x2)
eq_in_ag(x1, x2)  =  eq_in_ag(x2)
eq_out_ag(x1, x2)  =  eq_out_ag(x1, x2)
duplicate_out_ga(x1, x2)  =  duplicate_out_ga(x1, x2)
U2_ga(x1, x2, x3, x4)  =  U2_ga(x1, x4)
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
U3_ga(x1, x2, x3, x4)  =  U3_ga(x1, x4)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
U4_ga(x1, x2, x3, x4)  =  U4_ga(x1, x4)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(37) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X, .(H, .(H, Z))) → U2_GA(X, H, Z, head_in_ga(X, H))
U2_GA(X, H, Z, head_out_ga(X, H)) → U3_GA(X, H, Z, tail_in_ga(X, T))
U3_GA(X, H, Z, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T, Z)

The TRS R consists of the following rules:

head_in_ga([], X1) → head_out_ga([], X1)
head_in_ga(.(H, X2), H) → head_out_ga(.(H, X2), H)
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X3, T), T) → tail_out_ga(.(X3, T), T)

The argument filtering Pi contains the following mapping:
[]  =  []
head_in_ga(x1, x2)  =  head_in_ga(x1)
head_out_ga(x1, x2)  =  head_out_ga(x1)
.(x1, x2)  =  .(x2)
tail_in_ga(x1, x2)  =  tail_in_ga(x1)
tail_out_ga(x1, x2)  =  tail_out_ga(x1, x2)
DUPLICATE_IN_GA(x1, x2)  =  DUPLICATE_IN_GA(x1)
U2_GA(x1, x2, x3, x4)  =  U2_GA(x1, x4)
U3_GA(x1, x2, x3, x4)  =  U3_GA(x1, x4)

We have to consider all (P,R,Pi)-chains

(39) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(X) → U2_GA(X, head_in_ga(X))
U2_GA(X, head_out_ga(X)) → U3_GA(X, tail_in_ga(X))
U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)

The TRS R consists of the following rules:

head_in_ga([]) → head_out_ga([])
head_in_ga(.(X2)) → head_out_ga(.(X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(T)) → tail_out_ga(.(T), T)

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(41) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule DUPLICATE_IN_GA(X) → U2_GA(X, head_in_ga(X)) at position [1] we obtained the following new rules [LPAR04]:

DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))

(42) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga(X)) → U3_GA(X, tail_in_ga(X))
U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))

The TRS R consists of the following rules:

head_in_ga([]) → head_out_ga([])
head_in_ga(.(X2)) → head_out_ga(.(X2))
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(T)) → tail_out_ga(.(T), T)

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(43) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(44) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga(X)) → U3_GA(X, tail_in_ga(X))
U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(T)) → tail_out_ga(.(T), T)

The set Q consists of the following terms:

head_in_ga(x0)
tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(45) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

head_in_ga(x0)

(46) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA(X, head_out_ga(X)) → U3_GA(X, tail_in_ga(X))
U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(T)) → tail_out_ga(.(T), T)

The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(47) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule U2_GA(X, head_out_ga(X)) → U3_GA(X, tail_in_ga(X)) at position [1] we obtained the following new rules [LPAR04]:

U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))

The TRS R consists of the following rules:

tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(T)) → tail_out_ga(.(T), T)

The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(49) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(50) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))

R is empty.
The set Q consists of the following terms:

tail_in_ga(x0)

We have to consider all (P,Q,R)-chains.

(51) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

tail_in_ga(x0)

(52) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T)
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(53) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U3_GA(X, tail_out_ga(X, T)) → DUPLICATE_IN_GA(T) we obtained the following new rules [LPAR04]:

U3_GA([], tail_out_ga([], [])) → DUPLICATE_IN_GA([])
U3_GA(.(z0), tail_out_ga(.(z0), z0)) → DUPLICATE_IN_GA(z0)

(54) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))
DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))
U3_GA([], tail_out_ga([], [])) → DUPLICATE_IN_GA([])
U3_GA(.(z0), tail_out_ga(.(z0), z0)) → DUPLICATE_IN_GA(z0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(55) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.

(56) Complex Obligation (AND)

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))
U3_GA([], tail_out_ga([], [])) → DUPLICATE_IN_GA([])
DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([]))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(58) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U3_GA([], tail_out_ga([], [])) evaluates to t =U3_GA([], tail_out_ga([], []))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

U3_GA([], tail_out_ga([], []))DUPLICATE_IN_GA([])
with rule U3_GA([], tail_out_ga([], [])) → DUPLICATE_IN_GA([]) at position [] and matcher [ ]

DUPLICATE_IN_GA([])U2_GA([], head_out_ga([]))
with rule DUPLICATE_IN_GA([]) → U2_GA([], head_out_ga([])) at position [] and matcher [ ]

U2_GA([], head_out_ga([]))U3_GA([], tail_out_ga([], []))
with rule U2_GA([], head_out_ga([])) → U3_GA([], tail_out_ga([], []))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(59) FALSE

(60) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))
U3_GA(.(z0), tail_out_ga(.(z0), z0)) → DUPLICATE_IN_GA(z0)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(61) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • U2_GA(.(x0), head_out_ga(.(x0))) → U3_GA(.(x0), tail_out_ga(.(x0), x0))
    The graph contains the following edges 1 >= 1, 2 > 1

  • U3_GA(.(z0), tail_out_ga(.(z0), z0)) → DUPLICATE_IN_GA(z0)
    The graph contains the following edges 1 > 1, 2 > 1

  • DUPLICATE_IN_GA(.(x0)) → U2_GA(.(x0), head_out_ga(.(x0)))
    The graph contains the following edges 1 >= 1

(62) TRUE