(0) Obligation:

Clauses:

div(X1, 0, X2, X3) :- ','(!, failure(a)).
div(0, X4, Z, R) :- ','(!, ','(eq(Z, 0), eq(R, 0))).
div(X, Y, s(Z), R) :- ','(minus(X, Y, U), ','(!, div(U, Y, Z, R))).
div(X, X5, X6, X).
minus(X, 0, X).
minus(s(X), s(Y), Z) :- minus(X, Y, Z).
failure(b).
eq(X, X).

Queries:

div(g,g,a,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

div1(0, T8, 0, 0).
div1(s(T24), s(0), s(T20), T21) :- div1(T24, s(0), T20, T21).
div1(s(s(T27)), s(s(0)), s(T20), T21) :- div1(T27, s(s(0)), T20, T21).
div1(s(s(s(T30))), s(s(s(0))), s(T20), T21) :- div1(T30, s(s(s(0))), T20, T21).
div1(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) :- div1(T33, s(s(s(s(0)))), T20, T21).
div1(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) :- div1(T36, s(s(s(s(s(0))))), T20, T21).
div1(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) :- div1(T39, s(s(s(s(s(s(0)))))), T20, T21).
div1(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) :- minus61(T40, T41, X94).
div1(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) :- ','(minus61(T40, T41, T43), div1(T43, s(T42), T20, T21)).
div1(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))).
div1(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))).
div1(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))).
div1(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))).
div1(s(s(T59)), s(s(T60)), T61, s(s(T59))).
div1(s(T62), s(T63), T64, s(T62)).
div1(T65, T66, T67, T65).
div1(T68, T69, T70, T68).
minus61(T44, 0, T44).
minus61(s(T45), s(T46), X104) :- minus61(T45, T46, X104).

Queries:

div1(g,g,a,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
div1_in: (b,b,f,f) (b,f,f,f)
minus61_in: (b,b,f) (b,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → U1_GGAA(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)
DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → U2_GGAA(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)
DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_GGAA(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_GGAA(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_GGAA(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_GGAA(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_GGAA(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → MINUS61_IN_GGA(T40, T41, X94)
MINUS61_IN_GGA(s(T45), s(T46), X104) → U10_GGA(T45, T46, X104, minus61_in_gga(T45, T46, X104))
MINUS61_IN_GGA(s(T45), s(T46), X104) → MINUS61_IN_GGA(T45, T46, X104)
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GGAA(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_GGAA(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_GGAA(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
U8_GGAA(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)
DIV1_IN_GAAA(s(T24), s(0), s(T20), T21) → U1_GAAA(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
DIV1_IN_GAAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)
DIV1_IN_GAAA(s(s(T27)), s(s(0)), s(T20), T21) → U2_GAAA(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
DIV1_IN_GAAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)
DIV1_IN_GAAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_GAAA(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
DIV1_IN_GAAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_GAAA(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_GAAA(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_GAAA(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → MINUS61_IN_GAA(T40, T41, X94)
MINUS61_IN_GAA(s(T45), s(T46), X104) → U10_GAA(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
MINUS61_IN_GAA(s(T45), s(T46), X104) → MINUS61_IN_GAA(T45, T46, X104)
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_GAAA(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)
U1_GGAA(x1, x2, x3, x4)  =  U1_GGAA(x4)
U2_GGAA(x1, x2, x3, x4)  =  U2_GGAA(x4)
U3_GGAA(x1, x2, x3, x4)  =  U3_GGAA(x4)
U4_GGAA(x1, x2, x3, x4)  =  U4_GGAA(x4)
U5_GGAA(x1, x2, x3, x4)  =  U5_GGAA(x4)
U6_GGAA(x1, x2, x3, x4)  =  U6_GGAA(x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x5)
MINUS61_IN_GGA(x1, x2, x3)  =  MINUS61_IN_GGA(x1, x2)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x4)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x5)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x5)
DIV1_IN_GAAA(x1, x2, x3, x4)  =  DIV1_IN_GAAA(x1)
U1_GAAA(x1, x2, x3, x4)  =  U1_GAAA(x4)
U2_GAAA(x1, x2, x3, x4)  =  U2_GAAA(x4)
U3_GAAA(x1, x2, x3, x4)  =  U3_GAAA(x4)
U4_GAAA(x1, x2, x3, x4)  =  U4_GAAA(x4)
U5_GAAA(x1, x2, x3, x4)  =  U5_GAAA(x4)
U6_GAAA(x1, x2, x3, x4)  =  U6_GAAA(x4)
U7_GAAA(x1, x2, x3, x4, x5)  =  U7_GAAA(x5)
MINUS61_IN_GAA(x1, x2, x3)  =  MINUS61_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x4)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x5)
U9_GAAA(x1, x2, x3, x4, x5)  =  U9_GAAA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → U1_GGAA(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)
DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → U2_GGAA(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)
DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_GGAA(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_GGAA(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_GGAA(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_GGAA(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_GGAA(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → MINUS61_IN_GGA(T40, T41, X94)
MINUS61_IN_GGA(s(T45), s(T46), X104) → U10_GGA(T45, T46, X104, minus61_in_gga(T45, T46, X104))
MINUS61_IN_GGA(s(T45), s(T46), X104) → MINUS61_IN_GGA(T45, T46, X104)
DIV1_IN_GGAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GGAA(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_GGAA(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_GGAA(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
U8_GGAA(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)
DIV1_IN_GAAA(s(T24), s(0), s(T20), T21) → U1_GAAA(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
DIV1_IN_GAAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)
DIV1_IN_GAAA(s(s(T27)), s(s(0)), s(T20), T21) → U2_GAAA(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
DIV1_IN_GAAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)
DIV1_IN_GAAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_GAAA(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
DIV1_IN_GAAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_GAAA(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_GAAA(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_GAAA(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
DIV1_IN_GAAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → MINUS61_IN_GAA(T40, T41, X94)
MINUS61_IN_GAA(s(T45), s(T46), X104) → U10_GAA(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
MINUS61_IN_GAA(s(T45), s(T46), X104) → MINUS61_IN_GAA(T45, T46, X104)
DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_GAAA(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)
U1_GGAA(x1, x2, x3, x4)  =  U1_GGAA(x4)
U2_GGAA(x1, x2, x3, x4)  =  U2_GGAA(x4)
U3_GGAA(x1, x2, x3, x4)  =  U3_GGAA(x4)
U4_GGAA(x1, x2, x3, x4)  =  U4_GGAA(x4)
U5_GGAA(x1, x2, x3, x4)  =  U5_GGAA(x4)
U6_GGAA(x1, x2, x3, x4)  =  U6_GGAA(x4)
U7_GGAA(x1, x2, x3, x4, x5)  =  U7_GGAA(x5)
MINUS61_IN_GGA(x1, x2, x3)  =  MINUS61_IN_GGA(x1, x2)
U10_GGA(x1, x2, x3, x4)  =  U10_GGA(x4)
U8_GGAA(x1, x2, x3, x4, x5)  =  U8_GGAA(x5)
U9_GGAA(x1, x2, x3, x4, x5)  =  U9_GGAA(x5)
DIV1_IN_GAAA(x1, x2, x3, x4)  =  DIV1_IN_GAAA(x1)
U1_GAAA(x1, x2, x3, x4)  =  U1_GAAA(x4)
U2_GAAA(x1, x2, x3, x4)  =  U2_GAAA(x4)
U3_GAAA(x1, x2, x3, x4)  =  U3_GAAA(x4)
U4_GAAA(x1, x2, x3, x4)  =  U4_GAAA(x4)
U5_GAAA(x1, x2, x3, x4)  =  U5_GAAA(x4)
U6_GAAA(x1, x2, x3, x4)  =  U6_GAAA(x4)
U7_GAAA(x1, x2, x3, x4, x5)  =  U7_GAAA(x5)
MINUS61_IN_GAA(x1, x2, x3)  =  MINUS61_IN_GAA(x1)
U10_GAA(x1, x2, x3, x4)  =  U10_GAA(x4)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x5)
U9_GAAA(x1, x2, x3, x4, x5)  =  U9_GAAA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 9 SCCs with 28 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GAA(s(T45), s(T46), X104) → MINUS61_IN_GAA(T45, T46, X104)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
MINUS61_IN_GAA(x1, x2, x3)  =  MINUS61_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GAA(s(T45), s(T46), X104) → MINUS61_IN_GAA(T45, T46, X104)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUS61_IN_GAA(x1, x2, x3)  =  MINUS61_IN_GAA(x1)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GAA(s(T45)) → MINUS61_IN_GAA(T45)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS61_IN_GAA(s(T45)) → MINUS61_IN_GAA(T45)
    The graph contains the following edges 1 > 1

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GGA(s(T45), s(T46), X104) → MINUS61_IN_GGA(T45, T46, X104)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
MINUS61_IN_GGA(x1, x2, x3)  =  MINUS61_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GGA(s(T45), s(T46), X104) → MINUS61_IN_GGA(T45, T46, X104)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
MINUS61_IN_GGA(x1, x2, x3)  =  MINUS61_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

MINUS61_IN_GGA(s(T45), s(T46)) → MINUS61_IN_GGA(T45, T46)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • MINUS61_IN_GGA(s(T45), s(T46)) → MINUS61_IN_GGA(T45, T46)
    The graph contains the following edges 1 > 1, 2 > 2

(22) TRUE

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0))))))) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(28) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0))))))) → DIV1_IN_GGAA(T39, s(s(s(s(s(s(0)))))))
    The graph contains the following edges 1 > 1, 2 >= 2

(29) TRUE

(30) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(31) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(32) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(33) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(34) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0)))))) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(35) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(s(s(s(s(T36))))), s(s(s(s(s(0)))))) → DIV1_IN_GGAA(T36, s(s(s(s(s(0))))))
    The graph contains the following edges 1 > 1, 2 >= 2

(36) TRUE

(37) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(38) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(39) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → DIV1_IN_GGAA(T33, s(s(s(s(0)))), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(40) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0))))) → DIV1_IN_GGAA(T33, s(s(s(s(0)))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(42) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(s(s(s(T33)))), s(s(s(s(0))))) → DIV1_IN_GGAA(T33, s(s(s(s(0)))))
    The graph contains the following edges 1 > 1, 2 >= 2

(43) TRUE

(44) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(45) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(46) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0))), s(T20), T21) → DIV1_IN_GGAA(T30, s(s(s(0))), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(47) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(48) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0)))) → DIV1_IN_GGAA(T30, s(s(s(0))))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(49) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(s(s(T30))), s(s(s(0)))) → DIV1_IN_GGAA(T30, s(s(s(0))))
    The graph contains the following edges 1 > 1, 2 >= 2

(50) TRUE

(51) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(52) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(53) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(T27)), s(s(0)), s(T20), T21) → DIV1_IN_GGAA(T27, s(s(0)), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(54) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(s(T27)), s(s(0))) → DIV1_IN_GGAA(T27, s(s(0)))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(56) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(s(T27)), s(s(0))) → DIV1_IN_GGAA(T27, s(s(0)))
    The graph contains the following edges 1 > 1, 2 >= 2

(57) TRUE

(58) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(59) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(60) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(T24), s(0), s(T20), T21) → DIV1_IN_GGAA(T24, s(0), T20, T21)

R is empty.
The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
DIV1_IN_GGAA(x1, x2, x3, x4)  =  DIV1_IN_GGAA(x1, x2)

We have to consider all (P,R,Pi)-chains

(61) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(62) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GGAA(s(T24), s(0)) → DIV1_IN_GGAA(T24, s(0))

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(63) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DIV1_IN_GGAA(s(T24), s(0)) → DIV1_IN_GGAA(T24, s(0))
    The graph contains the following edges 1 > 1, 2 >= 2

(64) TRUE

(65) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)

The TRS R consists of the following rules:

div1_in_ggaa(0, T8, 0, 0) → div1_out_ggaa(0, T8, 0, 0)
div1_in_ggaa(s(T24), s(0), s(T20), T21) → U1_ggaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_ggaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
div1_in_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_ggaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
div1_in_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_ggaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
div1_in_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_ggaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_ggaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, X94))
minus61_in_gga(T44, 0, T44) → minus61_out_gga(T44, 0, T44)
minus61_in_gga(s(T45), s(T46), X104) → U10_gga(T45, T46, X104, minus61_in_gga(T45, T46, X104))
U10_gga(T45, T46, X104, minus61_out_gga(T45, T46, X104)) → minus61_out_gga(s(T45), s(T46), X104)
U7_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, X94)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_ggaa(T40, T41, T20, T21, minus61_in_gga(T40, T41, T43))
U8_ggaa(T40, T41, T20, T21, minus61_out_gga(T40, T41, T43)) → U9_ggaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(0, T8, 0, 0) → div1_out_gaaa(0, T8, 0, 0)
div1_in_gaaa(s(T24), s(0), s(T20), T21) → U1_gaaa(T24, T20, T21, div1_in_ggaa(T24, s(0), T20, T21))
div1_in_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_ggaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_ggaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_ggaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_ggaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_ggaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_ggaa(s(T62), s(T63), T64, s(T62)) → div1_out_ggaa(s(T62), s(T63), T64, s(T62))
div1_in_ggaa(T65, T66, T67, T65) → div1_out_ggaa(T65, T66, T67, T65)
U1_gaaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_gaaa(s(T24), s(0), s(T20), T21)
div1_in_gaaa(s(s(T27)), s(s(0)), s(T20), T21) → U2_gaaa(T27, T20, T21, div1_in_ggaa(T27, s(s(0)), T20, T21))
U2_gaaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_gaaa(s(s(T27)), s(s(0)), s(T20), T21)
div1_in_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21) → U3_gaaa(T30, T20, T21, div1_in_ggaa(T30, s(s(s(0))), T20, T21))
U3_gaaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_gaaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
div1_in_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21) → U4_gaaa(T33, T20, T21, div1_in_ggaa(T33, s(s(s(s(0)))), T20, T21))
U4_gaaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_gaaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21) → U5_gaaa(T36, T20, T21, div1_in_ggaa(T36, s(s(s(s(s(0))))), T20, T21))
U5_gaaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21) → U6_gaaa(T39, T20, T21, div1_in_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21))
U6_gaaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U7_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, X94))
minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)
U7_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, X94)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
div1_in_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_gaaa(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_gaaa(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → U9_gaaa(T40, T41, T20, T21, div1_in_gaaa(T43, s(T42), T20, T21))
div1_in_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47))))))) → div1_out_gaaa(s(s(s(s(s(s(T47)))))), s(s(s(s(s(s(T48)))))), T49, s(s(s(s(s(s(T47)))))))
div1_in_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50)))))) → div1_out_gaaa(s(s(s(s(s(T50))))), s(s(s(s(s(T51))))), T52, s(s(s(s(s(T50))))))
div1_in_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53))))) → div1_out_gaaa(s(s(s(s(T53)))), s(s(s(s(T54)))), T55, s(s(s(s(T53)))))
div1_in_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56)))) → div1_out_gaaa(s(s(s(T56))), s(s(s(T57))), T58, s(s(s(T56))))
div1_in_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59))) → div1_out_gaaa(s(s(T59)), s(s(T60)), T61, s(s(T59)))
div1_in_gaaa(s(T62), s(T63), T64, s(T62)) → div1_out_gaaa(s(T62), s(T63), T64, s(T62))
div1_in_gaaa(T65, T66, T67, T65) → div1_out_gaaa(T65, T66, T67, T65)
U9_gaaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_gaaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U9_ggaa(T40, T41, T20, T21, div1_out_gaaa(T43, s(T42), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21)
U6_ggaa(T39, T20, T21, div1_out_ggaa(T39, s(s(s(s(s(s(0)))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(s(T39)))))), s(s(s(s(s(s(0)))))), s(T20), T21)
U5_ggaa(T36, T20, T21, div1_out_ggaa(T36, s(s(s(s(s(0))))), T20, T21)) → div1_out_ggaa(s(s(s(s(s(T36))))), s(s(s(s(s(0))))), s(T20), T21)
U4_ggaa(T33, T20, T21, div1_out_ggaa(T33, s(s(s(s(0)))), T20, T21)) → div1_out_ggaa(s(s(s(s(T33)))), s(s(s(s(0)))), s(T20), T21)
U3_ggaa(T30, T20, T21, div1_out_ggaa(T30, s(s(s(0))), T20, T21)) → div1_out_ggaa(s(s(s(T30))), s(s(s(0))), s(T20), T21)
U2_ggaa(T27, T20, T21, div1_out_ggaa(T27, s(s(0)), T20, T21)) → div1_out_ggaa(s(s(T27)), s(s(0)), s(T20), T21)
U1_ggaa(T24, T20, T21, div1_out_ggaa(T24, s(0), T20, T21)) → div1_out_ggaa(s(T24), s(0), s(T20), T21)

The argument filtering Pi contains the following mapping:
div1_in_ggaa(x1, x2, x3, x4)  =  div1_in_ggaa(x1, x2)
0  =  0
div1_out_ggaa(x1, x2, x3, x4)  =  div1_out_ggaa
s(x1)  =  s(x1)
U1_ggaa(x1, x2, x3, x4)  =  U1_ggaa(x4)
U2_ggaa(x1, x2, x3, x4)  =  U2_ggaa(x4)
U3_ggaa(x1, x2, x3, x4)  =  U3_ggaa(x4)
U4_ggaa(x1, x2, x3, x4)  =  U4_ggaa(x4)
U5_ggaa(x1, x2, x3, x4)  =  U5_ggaa(x4)
U6_ggaa(x1, x2, x3, x4)  =  U6_ggaa(x4)
U7_ggaa(x1, x2, x3, x4, x5)  =  U7_ggaa(x5)
minus61_in_gga(x1, x2, x3)  =  minus61_in_gga(x1, x2)
minus61_out_gga(x1, x2, x3)  =  minus61_out_gga(x3)
U10_gga(x1, x2, x3, x4)  =  U10_gga(x4)
U8_ggaa(x1, x2, x3, x4, x5)  =  U8_ggaa(x5)
U9_ggaa(x1, x2, x3, x4, x5)  =  U9_ggaa(x5)
div1_in_gaaa(x1, x2, x3, x4)  =  div1_in_gaaa(x1)
div1_out_gaaa(x1, x2, x3, x4)  =  div1_out_gaaa
U1_gaaa(x1, x2, x3, x4)  =  U1_gaaa(x4)
U2_gaaa(x1, x2, x3, x4)  =  U2_gaaa(x4)
U3_gaaa(x1, x2, x3, x4)  =  U3_gaaa(x4)
U4_gaaa(x1, x2, x3, x4)  =  U4_gaaa(x4)
U5_gaaa(x1, x2, x3, x4)  =  U5_gaaa(x4)
U6_gaaa(x1, x2, x3, x4)  =  U6_gaaa(x4)
U7_gaaa(x1, x2, x3, x4, x5)  =  U7_gaaa(x5)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
U8_gaaa(x1, x2, x3, x4, x5)  =  U8_gaaa(x5)
U9_gaaa(x1, x2, x3, x4, x5)  =  U9_gaaa(x5)
DIV1_IN_GAAA(x1, x2, x3, x4)  =  DIV1_IN_GAAA(x1)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x5)

We have to consider all (P,R,Pi)-chains

(66) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(67) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DIV1_IN_GAAA(s(s(s(s(s(s(s(T40))))))), s(s(s(s(s(s(s(T41))))))), s(T20), T21) → U8_GAAA(T40, T41, T20, T21, minus61_in_gaa(T40, T41, T43))
U8_GAAA(T40, T41, T20, T21, minus61_out_gaa(T40, T41, T43)) → DIV1_IN_GAAA(T43, s(T42), T20, T21)

The TRS R consists of the following rules:

minus61_in_gaa(T44, 0, T44) → minus61_out_gaa(T44, 0, T44)
minus61_in_gaa(s(T45), s(T46), X104) → U10_gaa(T45, T46, X104, minus61_in_gaa(T45, T46, X104))
U10_gaa(T45, T46, X104, minus61_out_gaa(T45, T46, X104)) → minus61_out_gaa(s(T45), s(T46), X104)

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
minus61_in_gaa(x1, x2, x3)  =  minus61_in_gaa(x1)
minus61_out_gaa(x1, x2, x3)  =  minus61_out_gaa(x2, x3)
U10_gaa(x1, x2, x3, x4)  =  U10_gaa(x4)
DIV1_IN_GAAA(x1, x2, x3, x4)  =  DIV1_IN_GAAA(x1)
U8_GAAA(x1, x2, x3, x4, x5)  =  U8_GAAA(x5)

We have to consider all (P,R,Pi)-chains

(68) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DIV1_IN_GAAA(s(s(s(s(s(s(s(T40)))))))) → U8_GAAA(minus61_in_gaa(T40))
U8_GAAA(minus61_out_gaa(T41, T43)) → DIV1_IN_GAAA(T43)

The TRS R consists of the following rules:

minus61_in_gaa(T44) → minus61_out_gaa(0, T44)
minus61_in_gaa(s(T45)) → U10_gaa(minus61_in_gaa(T45))
U10_gaa(minus61_out_gaa(T46, X104)) → minus61_out_gaa(s(T46), X104)

The set Q consists of the following terms:

minus61_in_gaa(x0)
U10_gaa(x0)

We have to consider all (P,Q,R)-chains.

(70) MRRProof (EQUIVALENT transformation)

By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented dependency pairs:

DIV1_IN_GAAA(s(s(s(s(s(s(s(T40)))))))) → U8_GAAA(minus61_in_gaa(T40))
U8_GAAA(minus61_out_gaa(T41, T43)) → DIV1_IN_GAAA(T43)

Strictly oriented rules of the TRS R:

minus61_in_gaa(T44) → minus61_out_gaa(0, T44)

Used ordering: Polynomial interpretation [POLO]:

POL(0) = 0   
POL(DIV1_IN_GAAA(x1)) = x1   
POL(U10_gaa(x1)) = 1 + x1   
POL(U8_GAAA(x1)) = x1   
POL(minus61_in_gaa(x1)) = 2 + x1   
POL(minus61_out_gaa(x1, x2)) = 1 + x1 + x2   
POL(s(x1)) = 1 + x1   

(71) Obligation:

Q DP problem:
P is empty.
The TRS R consists of the following rules:

minus61_in_gaa(s(T45)) → U10_gaa(minus61_in_gaa(T45))
U10_gaa(minus61_out_gaa(T46, X104)) → minus61_out_gaa(s(T46), X104)

The set Q consists of the following terms:

minus61_in_gaa(x0)
U10_gaa(x0)

We have to consider all (P,Q,R)-chains.

(72) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(73) TRUE