(0) Obligation:
Clauses:
h(X) :- ','(f(X), g(X)).
f(c(0, X1)) :- !.
f(c(X, Y)) :- ','(p(X, P), f(c(P, s(Y)))).
g(c(X2, 0)) :- !.
g(c(X, Y)) :- ','(p(Y, P), g(c(s(X), P))).
p(0, 0).
p(s(X), X).
Queries:
h(g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
g88(T65, s(T70)) :- g88(s(T65), T70).
f105(s(T97), T93) :- f105(T97, s(T93)).
h1(c(0, s(s(s(s(s(s(s(s(T54)))))))))) :- g88(s(s(s(s(s(s(s(0))))))), T54).
h1(c(s(T81), T77)) :- f105(T81, T77).
h1(c(s(T81), T77)) :- ','(fc105(T81, T77), g88(T81, T77)).
Clauses:
gc88(T59, 0).
gc88(T65, s(T70)) :- gc88(s(T65), T70).
fc105(0, T86).
fc105(s(T97), T93) :- fc105(T97, s(T93)).
Afs:
h1(x1) = h1(x1)
(3) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
h1_in: (b)
g88_in: (b,b)
f105_in: (b,b)
fc105_in: (b,b)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
H1_IN_G(c(0, s(s(s(s(s(s(s(s(T54)))))))))) → U3_G(T54, g88_in_gg(s(s(s(s(s(s(s(0))))))), T54))
H1_IN_G(c(0, s(s(s(s(s(s(s(s(T54)))))))))) → G88_IN_GG(s(s(s(s(s(s(s(0))))))), T54)
G88_IN_GG(T65, s(T70)) → U1_GG(T65, T70, g88_in_gg(s(T65), T70))
G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
H1_IN_G(c(s(T81), T77)) → U4_G(T81, T77, f105_in_gg(T81, T77))
H1_IN_G(c(s(T81), T77)) → F105_IN_GG(T81, T77)
F105_IN_GG(s(T97), T93) → U2_GG(T97, T93, f105_in_gg(T97, s(T93)))
F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
H1_IN_G(c(s(T81), T77)) → U5_G(T81, T77, fc105_in_gg(T81, T77))
U5_G(T81, T77, fc105_out_gg(T81, T77)) → U6_G(T81, T77, g88_in_gg(T81, T77))
U5_G(T81, T77, fc105_out_gg(T81, T77)) → G88_IN_GG(T81, T77)
The TRS R consists of the following rules:
fc105_in_gg(0, T86) → fc105_out_gg(0, T86)
fc105_in_gg(s(T97), T93) → U9_gg(T97, T93, fc105_in_gg(T97, s(T93)))
U9_gg(T97, T93, fc105_out_gg(T97, s(T93))) → fc105_out_gg(s(T97), T93)
Pi is empty.
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
H1_IN_G(c(0, s(s(s(s(s(s(s(s(T54)))))))))) → U3_G(T54, g88_in_gg(s(s(s(s(s(s(s(0))))))), T54))
H1_IN_G(c(0, s(s(s(s(s(s(s(s(T54)))))))))) → G88_IN_GG(s(s(s(s(s(s(s(0))))))), T54)
G88_IN_GG(T65, s(T70)) → U1_GG(T65, T70, g88_in_gg(s(T65), T70))
G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
H1_IN_G(c(s(T81), T77)) → U4_G(T81, T77, f105_in_gg(T81, T77))
H1_IN_G(c(s(T81), T77)) → F105_IN_GG(T81, T77)
F105_IN_GG(s(T97), T93) → U2_GG(T97, T93, f105_in_gg(T97, s(T93)))
F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
H1_IN_G(c(s(T81), T77)) → U5_G(T81, T77, fc105_in_gg(T81, T77))
U5_G(T81, T77, fc105_out_gg(T81, T77)) → U6_G(T81, T77, g88_in_gg(T81, T77))
U5_G(T81, T77, fc105_out_gg(T81, T77)) → G88_IN_GG(T81, T77)
The TRS R consists of the following rules:
fc105_in_gg(0, T86) → fc105_out_gg(0, T86)
fc105_in_gg(s(T97), T93) → U9_gg(T97, T93, fc105_in_gg(T97, s(T93)))
U9_gg(T97, T93, fc105_out_gg(T97, s(T93))) → fc105_out_gg(s(T97), T93)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 9 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
The TRS R consists of the following rules:
fc105_in_gg(0, T86) → fc105_out_gg(0, T86)
fc105_in_gg(s(T97), T93) → U9_gg(T97, T93, fc105_in_gg(T97, s(T93)))
U9_gg(T97, T93, fc105_out_gg(T97, s(T93))) → fc105_out_gg(s(T97), T93)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- F105_IN_GG(s(T97), T93) → F105_IN_GG(T97, s(T93))
The graph contains the following edges 1 > 1
(13) YES
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
The TRS R consists of the following rules:
fc105_in_gg(0, T86) → fc105_out_gg(0, T86)
fc105_in_gg(s(T97), T93) → U9_gg(T97, T93, fc105_in_gg(T97, s(T93)))
U9_gg(T97, T93, fc105_out_gg(T97, s(T93))) → fc105_out_gg(s(T97), T93)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- G88_IN_GG(T65, s(T70)) → G88_IN_GG(s(T65), T70)
The graph contains the following edges 2 > 2
(20) YES