(0) Obligation:

Clauses:

countstack(empty, 0).
countstack(S, X) :- ','(no(empty_stack(S)), ','(pop(S, nil), ','(popped(S, Pd), countstack(Pd, X)))).
countstack(S, s(X)) :- ','(no(empty_stack(S)), ','(pop(S, P), ','(no(empty_list(P)), ','(head(P, H), ','(tail(P, T), ','(popped(S, Pd), countstack(push(H, push(T, Pd)), X))))))).
pop(empty, X1).
pop(push(P, X2), P).
popped(empty, empty).
popped(push(X3, Pd), Pd).
head(nil, X4).
head(cons(H, X5), H).
tail(nil, nil).
tail(cons(X6, T), T).
empty_stack(empty).
empty_list(nil).
no(X) :- ','(X, ','(!, failure(a))).
no(X7).
failure(b).

Queries:

countstack(g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

countstack1(empty, 0).
countstack1(push(nil, T10), T5) :- countstack1(T10, T5).
countstack1(push(cons(T24, T25), T26), s(T13)) :- countstack1(push(T24, push(T25, T26)), T13).

Queries:

countstack1(g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
countstack1_in: (b,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

countstack1_in_ga(empty, 0) → countstack1_out_ga(empty, 0)
countstack1_in_ga(push(nil, T10), T5) → U1_ga(T10, T5, countstack1_in_ga(T10, T5))
countstack1_in_ga(push(cons(T24, T25), T26), s(T13)) → U2_ga(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
U2_ga(T24, T25, T26, T13, countstack1_out_ga(push(T24, push(T25, T26)), T13)) → countstack1_out_ga(push(cons(T24, T25), T26), s(T13))
U1_ga(T10, T5, countstack1_out_ga(T10, T5)) → countstack1_out_ga(push(nil, T10), T5)

The argument filtering Pi contains the following mapping:
countstack1_in_ga(x1, x2)  =  countstack1_in_ga(x1)
empty  =  empty
countstack1_out_ga(x1, x2)  =  countstack1_out_ga(x2)
push(x1, x2)  =  push(x1, x2)
nil  =  nil
U1_ga(x1, x2, x3)  =  U1_ga(x3)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x5)
s(x1)  =  s(x1)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

countstack1_in_ga(empty, 0) → countstack1_out_ga(empty, 0)
countstack1_in_ga(push(nil, T10), T5) → U1_ga(T10, T5, countstack1_in_ga(T10, T5))
countstack1_in_ga(push(cons(T24, T25), T26), s(T13)) → U2_ga(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
U2_ga(T24, T25, T26, T13, countstack1_out_ga(push(T24, push(T25, T26)), T13)) → countstack1_out_ga(push(cons(T24, T25), T26), s(T13))
U1_ga(T10, T5, countstack1_out_ga(T10, T5)) → countstack1_out_ga(push(nil, T10), T5)

The argument filtering Pi contains the following mapping:
countstack1_in_ga(x1, x2)  =  countstack1_in_ga(x1)
empty  =  empty
countstack1_out_ga(x1, x2)  =  countstack1_out_ga(x2)
push(x1, x2)  =  push(x1, x2)
nil  =  nil
U1_ga(x1, x2, x3)  =  U1_ga(x3)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x5)
s(x1)  =  s(x1)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

COUNTSTACK1_IN_GA(push(nil, T10), T5) → U1_GA(T10, T5, countstack1_in_ga(T10, T5))
COUNTSTACK1_IN_GA(push(nil, T10), T5) → COUNTSTACK1_IN_GA(T10, T5)
COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → U2_GA(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)), T13)

The TRS R consists of the following rules:

countstack1_in_ga(empty, 0) → countstack1_out_ga(empty, 0)
countstack1_in_ga(push(nil, T10), T5) → U1_ga(T10, T5, countstack1_in_ga(T10, T5))
countstack1_in_ga(push(cons(T24, T25), T26), s(T13)) → U2_ga(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
U2_ga(T24, T25, T26, T13, countstack1_out_ga(push(T24, push(T25, T26)), T13)) → countstack1_out_ga(push(cons(T24, T25), T26), s(T13))
U1_ga(T10, T5, countstack1_out_ga(T10, T5)) → countstack1_out_ga(push(nil, T10), T5)

The argument filtering Pi contains the following mapping:
countstack1_in_ga(x1, x2)  =  countstack1_in_ga(x1)
empty  =  empty
countstack1_out_ga(x1, x2)  =  countstack1_out_ga(x2)
push(x1, x2)  =  push(x1, x2)
nil  =  nil
U1_ga(x1, x2, x3)  =  U1_ga(x3)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x5)
s(x1)  =  s(x1)
COUNTSTACK1_IN_GA(x1, x2)  =  COUNTSTACK1_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U2_GA(x1, x2, x3, x4, x5)  =  U2_GA(x5)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

COUNTSTACK1_IN_GA(push(nil, T10), T5) → U1_GA(T10, T5, countstack1_in_ga(T10, T5))
COUNTSTACK1_IN_GA(push(nil, T10), T5) → COUNTSTACK1_IN_GA(T10, T5)
COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → U2_GA(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)), T13)

The TRS R consists of the following rules:

countstack1_in_ga(empty, 0) → countstack1_out_ga(empty, 0)
countstack1_in_ga(push(nil, T10), T5) → U1_ga(T10, T5, countstack1_in_ga(T10, T5))
countstack1_in_ga(push(cons(T24, T25), T26), s(T13)) → U2_ga(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
U2_ga(T24, T25, T26, T13, countstack1_out_ga(push(T24, push(T25, T26)), T13)) → countstack1_out_ga(push(cons(T24, T25), T26), s(T13))
U1_ga(T10, T5, countstack1_out_ga(T10, T5)) → countstack1_out_ga(push(nil, T10), T5)

The argument filtering Pi contains the following mapping:
countstack1_in_ga(x1, x2)  =  countstack1_in_ga(x1)
empty  =  empty
countstack1_out_ga(x1, x2)  =  countstack1_out_ga(x2)
push(x1, x2)  =  push(x1, x2)
nil  =  nil
U1_ga(x1, x2, x3)  =  U1_ga(x3)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x5)
s(x1)  =  s(x1)
COUNTSTACK1_IN_GA(x1, x2)  =  COUNTSTACK1_IN_GA(x1)
U1_GA(x1, x2, x3)  =  U1_GA(x3)
U2_GA(x1, x2, x3, x4, x5)  =  U2_GA(x5)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 2 less nodes.

(8) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)), T13)
COUNTSTACK1_IN_GA(push(nil, T10), T5) → COUNTSTACK1_IN_GA(T10, T5)

The TRS R consists of the following rules:

countstack1_in_ga(empty, 0) → countstack1_out_ga(empty, 0)
countstack1_in_ga(push(nil, T10), T5) → U1_ga(T10, T5, countstack1_in_ga(T10, T5))
countstack1_in_ga(push(cons(T24, T25), T26), s(T13)) → U2_ga(T24, T25, T26, T13, countstack1_in_ga(push(T24, push(T25, T26)), T13))
U2_ga(T24, T25, T26, T13, countstack1_out_ga(push(T24, push(T25, T26)), T13)) → countstack1_out_ga(push(cons(T24, T25), T26), s(T13))
U1_ga(T10, T5, countstack1_out_ga(T10, T5)) → countstack1_out_ga(push(nil, T10), T5)

The argument filtering Pi contains the following mapping:
countstack1_in_ga(x1, x2)  =  countstack1_in_ga(x1)
empty  =  empty
countstack1_out_ga(x1, x2)  =  countstack1_out_ga(x2)
push(x1, x2)  =  push(x1, x2)
nil  =  nil
U1_ga(x1, x2, x3)  =  U1_ga(x3)
cons(x1, x2)  =  cons(x1, x2)
U2_ga(x1, x2, x3, x4, x5)  =  U2_ga(x5)
s(x1)  =  s(x1)
COUNTSTACK1_IN_GA(x1, x2)  =  COUNTSTACK1_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(9) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(10) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

COUNTSTACK1_IN_GA(push(cons(T24, T25), T26), s(T13)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)), T13)
COUNTSTACK1_IN_GA(push(nil, T10), T5) → COUNTSTACK1_IN_GA(T10, T5)

R is empty.
The argument filtering Pi contains the following mapping:
push(x1, x2)  =  push(x1, x2)
nil  =  nil
cons(x1, x2)  =  cons(x1, x2)
s(x1)  =  s(x1)
COUNTSTACK1_IN_GA(x1, x2)  =  COUNTSTACK1_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(11) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(12) Obligation:

Q DP problem:
The TRS P consists of the following rules:

COUNTSTACK1_IN_GA(push(cons(T24, T25), T26)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)))
COUNTSTACK1_IN_GA(push(nil, T10)) → COUNTSTACK1_IN_GA(T10)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)

By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.

The following dependency pairs can be deleted:

COUNTSTACK1_IN_GA(push(cons(T24, T25), T26)) → COUNTSTACK1_IN_GA(push(T24, push(T25, T26)))
COUNTSTACK1_IN_GA(push(nil, T10)) → COUNTSTACK1_IN_GA(T10)
No rules are removed from R.

Used ordering: POLO with Polynomial interpretation [POLO]:

POL(COUNTSTACK1_IN_GA(x1)) = 2·x1   
POL(cons(x1, x2)) = 2 + 2·x1 + 2·x2   
POL(nil) = 0   
POL(push(x1, x2)) = 1 + 2·x1 + x2   

(14) Obligation:

Q DP problem:
P is empty.
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) PisEmptyProof (EQUIVALENT transformation)

The TRS P is empty. Hence, there is no (P,Q,R) chain.

(16) TRUE