(0) Obligation:
Clauses:
goal(X) :- ','(s2l(X, Xs), conf(Xs)).
conf(X) :- ','(del2(X, Z), ','(del(U, Y, Z), conf(Y))).
del2(X, Y) :- ','(del(U, X, Z), del(V, Z, Y)).
del(X1, [], X2) :- ','(!, failure(a)).
del(H, X, T) :- ','(head(X, H), tail(X, T)).
del(X, Y, .(H, T2)) :- ','(head(Y, H), ','(tail(Y, T1), del(X, T1, T2))).
s2l(0, L) :- ','(!, eq(L, [])).
s2l(X, .(X3, Xs)) :- ','(p(X, P), s2l(P, Xs)).
head([], X4).
head(.(H, X5), H).
tail([], []).
tail(.(X6, Xs), Xs).
p(0, 0).
p(s(X), X).
failure(b).
eq(X, X).
Queries:
goal(g).
(1) PrologToDTProblemTransformerProof (SOUND transformation)
Built DT problem from termination graph.
(2) Obligation:
Triples:
del17(X196, [], .(X212, X198)) :- del16(X196, X198).
del17(X196, .(T49, T51), .(T49, X198)) :- del17(X196, T51, X198).
p13(T53, T54, T6) :- ','(delc65(T53, T54, T6), conf66(T54)).
conf66(T73) :- del17(X319, T73, X320).
conf66(T73) :- ','(delc17(T74, T73, T75), del17(X321, T75, X322)).
conf66(T65) :- ','(del2c74(T65, T67), p13(X290, X291, T67)).
s2l85(s(T89), .(X397, X398)) :- s2l85(T89, X398).
goal1(0) :- del16(X78, X79).
goal1(0) :- ','(delc16(T7, T8), del17(X80, T8, X81)).
goal1(0) :- ','(del2c12(T6), p13(X49, X50, T6)).
goal1(s(T82)) :- s2l85(T82, X356).
goal1(s(T82)) :- ','(s2lc85(T82, T83), conf66(.(X355, T83))).
Clauses:
delc17(X154, [], []).
delc17(T29, .(T29, T30), T30).
delc17(X196, [], .(X212, X198)) :- delc16(X196, X198).
delc17(X196, .(T49, T51), .(T49, X198)) :- delc17(X196, T51, X198).
qc13(T53, T54, T6) :- ','(delc65(T53, T54, T6), confc66(T54)).
confc66(T65) :- ','(del2c74(T65, T67), qc13(X290, X291, T67)).
s2lc85(0, []).
s2lc85(s(T89), .(X397, X398)) :- s2lc85(T89, X398).
del2c12(X81) :- ','(delc16(T7, T8), delc17(X80, T8, X81)).
del2c74(T73, X322) :- ','(delc17(T74, T73, T75), delc17(X321, T75, X322)).
Afs:
goal1(x1) = goal1(x1)
(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)
Deleted triples and predicates having undefined goals [UNKNOWN].
(4) Obligation:
Triples:
del17(X196, .(T49, T51), .(T49, X198)) :- del17(X196, T51, X198).
conf66(T73) :- del17(X319, T73, X320).
conf66(T73) :- ','(delc17(T74, T73, T75), del17(X321, T75, X322)).
s2l85(s(T89), .(X397, X398)) :- s2l85(T89, X398).
goal1(s(T82)) :- s2l85(T82, X356).
goal1(s(T82)) :- ','(s2lc85(T82, T83), conf66(.(X355, T83))).
Clauses:
delc17(X154, [], []).
delc17(T29, .(T29, T30), T30).
delc17(X196, .(T49, T51), .(T49, X198)) :- delc17(X196, T51, X198).
s2lc85(0, []).
s2lc85(s(T89), .(X397, X398)) :- s2lc85(T89, X398).
del2c74(T73, X322) :- ','(delc17(T74, T73, T75), delc17(X321, T75, X322)).
Afs:
goal1(x1) = goal1(x1)
(5) TriplesToPiDPProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal1_in: (b)
s2l85_in: (b,f)
s2lc85_in: (b,f)
conf66_in: (b)
del17_in: (f,b,f)
delc17_in: (f,b,f)
Transforming
TRIPLES into the following
Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_G(s(T82)) → U6_G(T82, s2l85_in_ga(T82, X356))
GOAL1_IN_G(s(T82)) → S2L85_IN_GA(T82, X356)
S2L85_IN_GA(s(T89), .(X397, X398)) → U5_GA(T89, X397, X398, s2l85_in_ga(T89, X398))
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
GOAL1_IN_G(s(T82)) → U7_G(T82, s2lc85_in_ga(T82, T83))
U7_G(T82, s2lc85_out_ga(T82, T83)) → U8_G(T82, conf66_in_g(.(X355, T83)))
U7_G(T82, s2lc85_out_ga(T82, T83)) → CONF66_IN_G(.(X355, T83))
CONF66_IN_G(T73) → U2_G(T73, del17_in_aga(X319, T73, X320))
CONF66_IN_G(T73) → DEL17_IN_AGA(X319, T73, X320)
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → U1_AGA(X196, T49, T51, X198, del17_in_aga(X196, T51, X198))
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
CONF66_IN_G(T73) → U3_G(T73, delc17_in_aga(T74, T73, T75))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → U4_G(T73, del17_in_aga(X321, T75, X322))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → DEL17_IN_AGA(X321, T75, X322)
The TRS R consists of the following rules:
s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
s2l85_in_ga(
x1,
x2) =
s2l85_in_ga(
x1)
.(
x1,
x2) =
.(
x2)
s2lc85_in_ga(
x1,
x2) =
s2lc85_in_ga(
x1)
0 =
0
s2lc85_out_ga(
x1,
x2) =
s2lc85_out_ga(
x1,
x2)
U11_ga(
x1,
x2,
x3,
x4) =
U11_ga(
x1,
x4)
conf66_in_g(
x1) =
conf66_in_g(
x1)
del17_in_aga(
x1,
x2,
x3) =
del17_in_aga(
x2)
delc17_in_aga(
x1,
x2,
x3) =
delc17_in_aga(
x2)
[] =
[]
delc17_out_aga(
x1,
x2,
x3) =
delc17_out_aga(
x2,
x3)
U10_aga(
x1,
x2,
x3,
x4,
x5) =
U10_aga(
x3,
x5)
GOAL1_IN_G(
x1) =
GOAL1_IN_G(
x1)
U6_G(
x1,
x2) =
U6_G(
x1,
x2)
S2L85_IN_GA(
x1,
x2) =
S2L85_IN_GA(
x1)
U5_GA(
x1,
x2,
x3,
x4) =
U5_GA(
x1,
x4)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
CONF66_IN_G(
x1) =
CONF66_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
DEL17_IN_AGA(
x1,
x2,
x3) =
DEL17_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4,
x5) =
U1_AGA(
x3,
x5)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL1_IN_G(s(T82)) → U6_G(T82, s2l85_in_ga(T82, X356))
GOAL1_IN_G(s(T82)) → S2L85_IN_GA(T82, X356)
S2L85_IN_GA(s(T89), .(X397, X398)) → U5_GA(T89, X397, X398, s2l85_in_ga(T89, X398))
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
GOAL1_IN_G(s(T82)) → U7_G(T82, s2lc85_in_ga(T82, T83))
U7_G(T82, s2lc85_out_ga(T82, T83)) → U8_G(T82, conf66_in_g(.(X355, T83)))
U7_G(T82, s2lc85_out_ga(T82, T83)) → CONF66_IN_G(.(X355, T83))
CONF66_IN_G(T73) → U2_G(T73, del17_in_aga(X319, T73, X320))
CONF66_IN_G(T73) → DEL17_IN_AGA(X319, T73, X320)
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → U1_AGA(X196, T49, T51, X198, del17_in_aga(X196, T51, X198))
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
CONF66_IN_G(T73) → U3_G(T73, delc17_in_aga(T74, T73, T75))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → U4_G(T73, del17_in_aga(X321, T75, X322))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → DEL17_IN_AGA(X321, T75, X322)
The TRS R consists of the following rules:
s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
s2l85_in_ga(
x1,
x2) =
s2l85_in_ga(
x1)
.(
x1,
x2) =
.(
x2)
s2lc85_in_ga(
x1,
x2) =
s2lc85_in_ga(
x1)
0 =
0
s2lc85_out_ga(
x1,
x2) =
s2lc85_out_ga(
x1,
x2)
U11_ga(
x1,
x2,
x3,
x4) =
U11_ga(
x1,
x4)
conf66_in_g(
x1) =
conf66_in_g(
x1)
del17_in_aga(
x1,
x2,
x3) =
del17_in_aga(
x2)
delc17_in_aga(
x1,
x2,
x3) =
delc17_in_aga(
x2)
[] =
[]
delc17_out_aga(
x1,
x2,
x3) =
delc17_out_aga(
x2,
x3)
U10_aga(
x1,
x2,
x3,
x4,
x5) =
U10_aga(
x3,
x5)
GOAL1_IN_G(
x1) =
GOAL1_IN_G(
x1)
U6_G(
x1,
x2) =
U6_G(
x1,
x2)
S2L85_IN_GA(
x1,
x2) =
S2L85_IN_GA(
x1)
U5_GA(
x1,
x2,
x3,
x4) =
U5_GA(
x1,
x4)
U7_G(
x1,
x2) =
U7_G(
x1,
x2)
U8_G(
x1,
x2) =
U8_G(
x1,
x2)
CONF66_IN_G(
x1) =
CONF66_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
DEL17_IN_AGA(
x1,
x2,
x3) =
DEL17_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3,
x4,
x5) =
U1_AGA(
x3,
x5)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
The TRS R consists of the following rules:
s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
s2lc85_in_ga(
x1,
x2) =
s2lc85_in_ga(
x1)
0 =
0
s2lc85_out_ga(
x1,
x2) =
s2lc85_out_ga(
x1,
x2)
U11_ga(
x1,
x2,
x3,
x4) =
U11_ga(
x1,
x4)
delc17_in_aga(
x1,
x2,
x3) =
delc17_in_aga(
x2)
[] =
[]
delc17_out_aga(
x1,
x2,
x3) =
delc17_out_aga(
x2,
x3)
U10_aga(
x1,
x2,
x3,
x4,
x5) =
U10_aga(
x3,
x5)
DEL17_IN_AGA(
x1,
x2,
x3) =
DEL17_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
R is empty.
The argument filtering Pi contains the following mapping:
.(
x1,
x2) =
.(
x2)
DEL17_IN_AGA(
x1,
x2,
x3) =
DEL17_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
DEL17_IN_AGA(.(T51)) → DEL17_IN_AGA(T51)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- DEL17_IN_AGA(.(T51)) → DEL17_IN_AGA(T51)
The graph contains the following edges 1 > 1
(15) YES
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
The TRS R consists of the following rules:
s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
s2lc85_in_ga(
x1,
x2) =
s2lc85_in_ga(
x1)
0 =
0
s2lc85_out_ga(
x1,
x2) =
s2lc85_out_ga(
x1,
x2)
U11_ga(
x1,
x2,
x3,
x4) =
U11_ga(
x1,
x4)
delc17_in_aga(
x1,
x2,
x3) =
delc17_in_aga(
x2)
[] =
[]
delc17_out_aga(
x1,
x2,
x3) =
delc17_out_aga(
x2,
x3)
U10_aga(
x1,
x2,
x3,
x4,
x5) =
U10_aga(
x3,
x5)
S2L85_IN_GA(
x1,
x2) =
S2L85_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
S2L85_IN_GA(
x1,
x2) =
S2L85_IN_GA(
x1)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L85_IN_GA(s(T89)) → S2L85_IN_GA(T89)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- S2L85_IN_GA(s(T89)) → S2L85_IN_GA(T89)
The graph contains the following edges 1 > 1
(22) YES