(0) Obligation:

Clauses:

goal(X) :- ','(s2l(X, Xs), conf(Xs)).
conf(X) :- ','(del2(X, Z), ','(del(U, Y, Z), conf(Y))).
del2(X, Y) :- ','(del(U, X, Z), del(V, Z, Y)).
del(X1, [], X2) :- ','(!, failure(a)).
del(H, X, T) :- ','(head(X, H), tail(X, T)).
del(X, Y, .(H, T2)) :- ','(head(Y, H), ','(tail(Y, T1), del(X, T1, T2))).
s2l(0, L) :- ','(!, eq(L, [])).
s2l(X, .(X3, Xs)) :- ','(p(X, P), s2l(P, Xs)).
head([], X4).
head(.(H, X5), H).
tail([], []).
tail(.(X6, Xs), Xs).
p(0, 0).
p(s(X), X).
failure(b).
eq(X, X).

Queries:

goal(g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

del17(X196, [], .(X212, X198)) :- del16(X196, X198).
del17(X196, .(T49, T51), .(T49, X198)) :- del17(X196, T51, X198).
p13(T53, T54, T6) :- ','(delc65(T53, T54, T6), conf66(T54)).
conf66(T73) :- del17(X319, T73, X320).
conf66(T73) :- ','(delc17(T74, T73, T75), del17(X321, T75, X322)).
conf66(T65) :- ','(del2c74(T65, T67), p13(X290, X291, T67)).
s2l85(s(T89), .(X397, X398)) :- s2l85(T89, X398).
goal1(0) :- del16(X78, X79).
goal1(0) :- ','(delc16(T7, T8), del17(X80, T8, X81)).
goal1(0) :- ','(del2c12(T6), p13(X49, X50, T6)).
goal1(s(T82)) :- s2l85(T82, X356).
goal1(s(T82)) :- ','(s2lc85(T82, T83), conf66(.(X355, T83))).

Clauses:

delc17(X154, [], []).
delc17(T29, .(T29, T30), T30).
delc17(X196, [], .(X212, X198)) :- delc16(X196, X198).
delc17(X196, .(T49, T51), .(T49, X198)) :- delc17(X196, T51, X198).
qc13(T53, T54, T6) :- ','(delc65(T53, T54, T6), confc66(T54)).
confc66(T65) :- ','(del2c74(T65, T67), qc13(X290, X291, T67)).
s2lc85(0, []).
s2lc85(s(T89), .(X397, X398)) :- s2lc85(T89, X398).
del2c12(X81) :- ','(delc16(T7, T8), delc17(X80, T8, X81)).
del2c74(T73, X322) :- ','(delc17(T74, T73, T75), delc17(X321, T75, X322)).

Afs:

goal1(x1)  =  goal1(x1)

(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)

Deleted triples and predicates having undefined goals [UNKNOWN].

(4) Obligation:

Triples:

del17(X196, .(T49, T51), .(T49, X198)) :- del17(X196, T51, X198).
conf66(T73) :- del17(X319, T73, X320).
conf66(T73) :- ','(delc17(T74, T73, T75), del17(X321, T75, X322)).
s2l85(s(T89), .(X397, X398)) :- s2l85(T89, X398).
goal1(s(T82)) :- s2l85(T82, X356).
goal1(s(T82)) :- ','(s2lc85(T82, T83), conf66(.(X355, T83))).

Clauses:

delc17(X154, [], []).
delc17(T29, .(T29, T30), T30).
delc17(X196, .(T49, T51), .(T49, X198)) :- delc17(X196, T51, X198).
s2lc85(0, []).
s2lc85(s(T89), .(X397, X398)) :- s2lc85(T89, X398).
del2c74(T73, X322) :- ','(delc17(T74, T73, T75), delc17(X321, T75, X322)).

Afs:

goal1(x1)  =  goal1(x1)

(5) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal1_in: (b)
s2l85_in: (b,f)
s2lc85_in: (b,f)
conf66_in: (b)
del17_in: (f,b,f)
delc17_in: (f,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_G(s(T82)) → U6_G(T82, s2l85_in_ga(T82, X356))
GOAL1_IN_G(s(T82)) → S2L85_IN_GA(T82, X356)
S2L85_IN_GA(s(T89), .(X397, X398)) → U5_GA(T89, X397, X398, s2l85_in_ga(T89, X398))
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
GOAL1_IN_G(s(T82)) → U7_G(T82, s2lc85_in_ga(T82, T83))
U7_G(T82, s2lc85_out_ga(T82, T83)) → U8_G(T82, conf66_in_g(.(X355, T83)))
U7_G(T82, s2lc85_out_ga(T82, T83)) → CONF66_IN_G(.(X355, T83))
CONF66_IN_G(T73) → U2_G(T73, del17_in_aga(X319, T73, X320))
CONF66_IN_G(T73) → DEL17_IN_AGA(X319, T73, X320)
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → U1_AGA(X196, T49, T51, X198, del17_in_aga(X196, T51, X198))
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
CONF66_IN_G(T73) → U3_G(T73, delc17_in_aga(T74, T73, T75))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → U4_G(T73, del17_in_aga(X321, T75, X322))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → DEL17_IN_AGA(X321, T75, X322)

The TRS R consists of the following rules:

s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
s2l85_in_ga(x1, x2)  =  s2l85_in_ga(x1)
.(x1, x2)  =  .(x2)
s2lc85_in_ga(x1, x2)  =  s2lc85_in_ga(x1)
0  =  0
s2lc85_out_ga(x1, x2)  =  s2lc85_out_ga(x1, x2)
U11_ga(x1, x2, x3, x4)  =  U11_ga(x1, x4)
conf66_in_g(x1)  =  conf66_in_g(x1)
del17_in_aga(x1, x2, x3)  =  del17_in_aga(x2)
delc17_in_aga(x1, x2, x3)  =  delc17_in_aga(x2)
[]  =  []
delc17_out_aga(x1, x2, x3)  =  delc17_out_aga(x2, x3)
U10_aga(x1, x2, x3, x4, x5)  =  U10_aga(x3, x5)
GOAL1_IN_G(x1)  =  GOAL1_IN_G(x1)
U6_G(x1, x2)  =  U6_G(x1, x2)
S2L85_IN_GA(x1, x2)  =  S2L85_IN_GA(x1)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x4)
U7_G(x1, x2)  =  U7_G(x1, x2)
U8_G(x1, x2)  =  U8_G(x1, x2)
CONF66_IN_G(x1)  =  CONF66_IN_G(x1)
U2_G(x1, x2)  =  U2_G(x1, x2)
DEL17_IN_AGA(x1, x2, x3)  =  DEL17_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U3_G(x1, x2)  =  U3_G(x1, x2)
U4_G(x1, x2)  =  U4_G(x1, x2)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_G(s(T82)) → U6_G(T82, s2l85_in_ga(T82, X356))
GOAL1_IN_G(s(T82)) → S2L85_IN_GA(T82, X356)
S2L85_IN_GA(s(T89), .(X397, X398)) → U5_GA(T89, X397, X398, s2l85_in_ga(T89, X398))
S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)
GOAL1_IN_G(s(T82)) → U7_G(T82, s2lc85_in_ga(T82, T83))
U7_G(T82, s2lc85_out_ga(T82, T83)) → U8_G(T82, conf66_in_g(.(X355, T83)))
U7_G(T82, s2lc85_out_ga(T82, T83)) → CONF66_IN_G(.(X355, T83))
CONF66_IN_G(T73) → U2_G(T73, del17_in_aga(X319, T73, X320))
CONF66_IN_G(T73) → DEL17_IN_AGA(X319, T73, X320)
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → U1_AGA(X196, T49, T51, X198, del17_in_aga(X196, T51, X198))
DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)
CONF66_IN_G(T73) → U3_G(T73, delc17_in_aga(T74, T73, T75))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → U4_G(T73, del17_in_aga(X321, T75, X322))
U3_G(T73, delc17_out_aga(T74, T73, T75)) → DEL17_IN_AGA(X321, T75, X322)

The TRS R consists of the following rules:

s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
s2l85_in_ga(x1, x2)  =  s2l85_in_ga(x1)
.(x1, x2)  =  .(x2)
s2lc85_in_ga(x1, x2)  =  s2lc85_in_ga(x1)
0  =  0
s2lc85_out_ga(x1, x2)  =  s2lc85_out_ga(x1, x2)
U11_ga(x1, x2, x3, x4)  =  U11_ga(x1, x4)
conf66_in_g(x1)  =  conf66_in_g(x1)
del17_in_aga(x1, x2, x3)  =  del17_in_aga(x2)
delc17_in_aga(x1, x2, x3)  =  delc17_in_aga(x2)
[]  =  []
delc17_out_aga(x1, x2, x3)  =  delc17_out_aga(x2, x3)
U10_aga(x1, x2, x3, x4, x5)  =  U10_aga(x3, x5)
GOAL1_IN_G(x1)  =  GOAL1_IN_G(x1)
U6_G(x1, x2)  =  U6_G(x1, x2)
S2L85_IN_GA(x1, x2)  =  S2L85_IN_GA(x1)
U5_GA(x1, x2, x3, x4)  =  U5_GA(x1, x4)
U7_G(x1, x2)  =  U7_G(x1, x2)
U8_G(x1, x2)  =  U8_G(x1, x2)
CONF66_IN_G(x1)  =  CONF66_IN_G(x1)
U2_G(x1, x2)  =  U2_G(x1, x2)
DEL17_IN_AGA(x1, x2, x3)  =  DEL17_IN_AGA(x2)
U1_AGA(x1, x2, x3, x4, x5)  =  U1_AGA(x3, x5)
U3_G(x1, x2)  =  U3_G(x1, x2)
U4_G(x1, x2)  =  U4_G(x1, x2)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)

The TRS R consists of the following rules:

s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
s2lc85_in_ga(x1, x2)  =  s2lc85_in_ga(x1)
0  =  0
s2lc85_out_ga(x1, x2)  =  s2lc85_out_ga(x1, x2)
U11_ga(x1, x2, x3, x4)  =  U11_ga(x1, x4)
delc17_in_aga(x1, x2, x3)  =  delc17_in_aga(x2)
[]  =  []
delc17_out_aga(x1, x2, x3)  =  delc17_out_aga(x2, x3)
U10_aga(x1, x2, x3, x4, x5)  =  U10_aga(x3, x5)
DEL17_IN_AGA(x1, x2, x3)  =  DEL17_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

DEL17_IN_AGA(X196, .(T49, T51), .(T49, X198)) → DEL17_IN_AGA(X196, T51, X198)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x2)
DEL17_IN_AGA(x1, x2, x3)  =  DEL17_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

DEL17_IN_AGA(.(T51)) → DEL17_IN_AGA(T51)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • DEL17_IN_AGA(.(T51)) → DEL17_IN_AGA(T51)
    The graph contains the following edges 1 > 1

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)

The TRS R consists of the following rules:

s2lc85_in_ga(0, []) → s2lc85_out_ga(0, [])
s2lc85_in_ga(s(T89), .(X397, X398)) → U11_ga(T89, X397, X398, s2lc85_in_ga(T89, X398))
U11_ga(T89, X397, X398, s2lc85_out_ga(T89, X398)) → s2lc85_out_ga(s(T89), .(X397, X398))
delc17_in_aga(X154, [], []) → delc17_out_aga(X154, [], [])
delc17_in_aga(T29, .(T29, T30), T30) → delc17_out_aga(T29, .(T29, T30), T30)
delc17_in_aga(X196, .(T49, T51), .(T49, X198)) → U10_aga(X196, T49, T51, X198, delc17_in_aga(X196, T51, X198))
U10_aga(X196, T49, T51, X198, delc17_out_aga(X196, T51, X198)) → delc17_out_aga(X196, .(T49, T51), .(T49, X198))

The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
s2lc85_in_ga(x1, x2)  =  s2lc85_in_ga(x1)
0  =  0
s2lc85_out_ga(x1, x2)  =  s2lc85_out_ga(x1, x2)
U11_ga(x1, x2, x3, x4)  =  U11_ga(x1, x4)
delc17_in_aga(x1, x2, x3)  =  delc17_in_aga(x2)
[]  =  []
delc17_out_aga(x1, x2, x3)  =  delc17_out_aga(x2, x3)
U10_aga(x1, x2, x3, x4, x5)  =  U10_aga(x3, x5)
S2L85_IN_GA(x1, x2)  =  S2L85_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

S2L85_IN_GA(s(T89), .(X397, X398)) → S2L85_IN_GA(T89, X398)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
.(x1, x2)  =  .(x2)
S2L85_IN_GA(x1, x2)  =  S2L85_IN_GA(x1)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

S2L85_IN_GA(s(T89)) → S2L85_IN_GA(T89)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • S2L85_IN_GA(s(T89)) → S2L85_IN_GA(T89)
    The graph contains the following edges 1 > 1

(22) YES