(0) Obligation:
Clauses:
goal(X) :- ','(s2l(X, Xs), list(Xs)).
list([]) :- !.
list(X) :- ','(tail(X, T), list(T)).
s2l(0, L) :- ','(!, eq(L, [])).
s2l(X, .(X1, Xs)) :- ','(p(X, P), s2l(P, Xs)).
tail([], []).
tail(.(X2, Xs), Xs).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
goal(g).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
goal(X) :- ','(s2l(X, Xs), list(Xs)).
list([]) :- true.
list(X) :- ','(tail(X, T), list(T)).
s2l(0, L) :- eq(L, []).
s2l(X, .(X1, Xs)) :- ','(p(X, P), s2l(P, Xs)).
tail([], []).
tail(.(X2, Xs), Xs).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
goal(g).
(3) UndefinedPredicateHandlerProof (SOUND transformation)
Added facts for all undefined predicates [PROLOG].
(4) Obligation:
Clauses:
goal(X) :- ','(s2l(X, Xs), list(Xs)).
list([]) :- true.
list(X) :- ','(tail(X, T), list(T)).
s2l(0, L) :- eq(L, []).
s2l(X, .(X1, Xs)) :- ','(p(X, P), s2l(P, Xs)).
tail([], []).
tail(.(X2, Xs), Xs).
p(0, 0).
p(s(X), X).
eq(X, X).
true.
Queries:
goal(g).
(5) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal_in: (b)
s2l_in: (b,f)
list_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(6) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
(7) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_G(X) → U1_G(X, s2l_in_ga(X, Xs))
GOAL_IN_G(X) → S2L_IN_GA(X, Xs)
S2L_IN_GA(0, L) → U6_GA(L, eq_in_ag(L, []))
S2L_IN_GA(0, L) → EQ_IN_AG(L, [])
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
S2L_IN_GA(X, .(X1, Xs)) → P_IN_GA(X, P)
U7_GA(X, X1, Xs, p_out_ga(X, P)) → U8_GA(X, X1, Xs, s2l_in_ga(P, Xs))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
U1_G(X, s2l_out_ga(X, Xs)) → U2_G(X, list_in_g(Xs))
U1_G(X, s2l_out_ga(X, Xs)) → LIST_IN_G(Xs)
LIST_IN_G([]) → U3_G(true_in_)
LIST_IN_G([]) → TRUE_IN_
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
LIST_IN_G(X) → TAIL_IN_GA(X, T)
U4_G(X, tail_out_ga(X, T)) → U5_G(X, list_in_g(T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
GOAL_IN_G(
x1) =
GOAL_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U6_GA(
x1,
x2) =
U6_GA(
x2)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U8_GA(
x1,
x2,
x3,
x4) =
U8_GA(
x4)
U2_G(
x1,
x2) =
U2_G(
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U3_G(
x1) =
U3_G(
x1)
TRUE_IN_ =
TRUE_IN_
U4_G(
x1,
x2) =
U4_G(
x2)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
We have to consider all (P,R,Pi)-chains
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_G(X) → U1_G(X, s2l_in_ga(X, Xs))
GOAL_IN_G(X) → S2L_IN_GA(X, Xs)
S2L_IN_GA(0, L) → U6_GA(L, eq_in_ag(L, []))
S2L_IN_GA(0, L) → EQ_IN_AG(L, [])
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
S2L_IN_GA(X, .(X1, Xs)) → P_IN_GA(X, P)
U7_GA(X, X1, Xs, p_out_ga(X, P)) → U8_GA(X, X1, Xs, s2l_in_ga(P, Xs))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
U1_G(X, s2l_out_ga(X, Xs)) → U2_G(X, list_in_g(Xs))
U1_G(X, s2l_out_ga(X, Xs)) → LIST_IN_G(Xs)
LIST_IN_G([]) → U3_G(true_in_)
LIST_IN_G([]) → TRUE_IN_
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
LIST_IN_G(X) → TAIL_IN_GA(X, T)
U4_G(X, tail_out_ga(X, T)) → U5_G(X, list_in_g(T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
GOAL_IN_G(
x1) =
GOAL_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U6_GA(
x1,
x2) =
U6_GA(
x2)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U8_GA(
x1,
x2,
x3,
x4) =
U8_GA(
x4)
U2_G(
x1,
x2) =
U2_G(
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U3_G(
x1) =
U3_G(
x1)
TRUE_IN_ =
TRUE_IN_
U4_G(
x1,
x2) =
U4_G(
x2)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
We have to consider all (P,R,Pi)-chains
(9) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.
(10) Complex Obligation (AND)
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
We have to consider all (P,R,Pi)-chains
(12) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(13) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
We have to consider all (P,R,Pi)-chains
(14) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(15) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(tail_in_ga(X))
U4_G(tail_out_ga(T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(16) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
tail_in_ga(.(Xs)) → tail_out_ga(Xs)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(.(x1)) = 2·x1
POL(LIST_IN_G(x1)) = x1
POL(U4_G(x1)) = x1
POL([]) = 0
POL(tail_in_ga(x1)) = x1
POL(tail_out_ga(x1)) = 2·x1
(17) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(tail_in_ga(X))
U4_G(tail_out_ga(T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(18) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
LIST_IN_G(
X) →
U4_G(
tail_in_ga(
X)) at position [0] we obtained the following new rules [LPAR04]:
LIST_IN_G([]) → U4_G(tail_out_ga([]))
(19) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(tail_out_ga(T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G(tail_out_ga([]))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([])
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(20) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(21) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(tail_out_ga(T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G(tail_out_ga([]))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(22) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(23) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(tail_out_ga(T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G(tail_out_ga([]))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(24) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_G(
tail_out_ga(
T)) →
LIST_IN_G(
T) we obtained the following new rules [LPAR04]:
U4_G(tail_out_ga([])) → LIST_IN_G([])
(25) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G([]) → U4_G(tail_out_ga([]))
U4_G(tail_out_ga([])) → LIST_IN_G([])
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(26) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U4_G(
tail_out_ga(
[])) evaluates to t =
U4_G(
tail_out_ga(
[]))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU4_G(tail_out_ga([])) →
LIST_IN_G(
[])
with rule
U4_G(
tail_out_ga(
[])) →
LIST_IN_G(
[]) at position [] and matcher [ ]
LIST_IN_G([]) →
U4_G(
tail_out_ga(
[]))
with rule
LIST_IN_G(
[]) →
U4_G(
tail_out_ga(
[]))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(27) FALSE
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g
U4_g(
x1,
x2) =
U4_g(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x2)
U5_g(
x1,
x2) =
U5_g(
x2)
goal_out_g(
x1) =
goal_out_g
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x4)
We have to consider all (P,R,Pi)-chains
(29) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x4)
We have to consider all (P,R,Pi)-chains
(31) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X) → U7_GA(p_in_ga(X))
U7_GA(p_out_ga(P)) → S2L_IN_GA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(33) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(S2L_IN_GA(x1)) = x1
POL(U7_GA(x1)) = x1
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 2·x1
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X) → U7_GA(p_in_ga(X))
U7_GA(p_out_ga(P)) → S2L_IN_GA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(35) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
S2L_IN_GA(
X) →
U7_GA(
p_in_ga(
X)) at position [0] we obtained the following new rules [LPAR04]:
S2L_IN_GA(0) → U7_GA(p_out_ga(0))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(p_out_ga(P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(p_out_ga(0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(37) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(p_out_ga(P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(p_out_ga(0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(39) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(p_out_ga(P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(p_out_ga(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U7_GA(
p_out_ga(
P)) →
S2L_IN_GA(
P) we obtained the following new rules [LPAR04]:
U7_GA(p_out_ga(0)) → S2L_IN_GA(0)
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(0) → U7_GA(p_out_ga(0))
U7_GA(p_out_ga(0)) → S2L_IN_GA(0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U7_GA(
p_out_ga(
0)) evaluates to t =
U7_GA(
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU7_GA(p_out_ga(0)) →
S2L_IN_GA(
0)
with rule
U7_GA(
p_out_ga(
0)) →
S2L_IN_GA(
0) at position [] and matcher [ ]
S2L_IN_GA(0) →
U7_GA(
p_out_ga(
0))
with rule
S2L_IN_GA(
0) →
U7_GA(
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(44) FALSE
(45) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal_in: (b)
s2l_in: (b,f)
list_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(46) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
(47) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_G(X) → U1_G(X, s2l_in_ga(X, Xs))
GOAL_IN_G(X) → S2L_IN_GA(X, Xs)
S2L_IN_GA(0, L) → U6_GA(L, eq_in_ag(L, []))
S2L_IN_GA(0, L) → EQ_IN_AG(L, [])
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
S2L_IN_GA(X, .(X1, Xs)) → P_IN_GA(X, P)
U7_GA(X, X1, Xs, p_out_ga(X, P)) → U8_GA(X, X1, Xs, s2l_in_ga(P, Xs))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
U1_G(X, s2l_out_ga(X, Xs)) → U2_G(X, list_in_g(Xs))
U1_G(X, s2l_out_ga(X, Xs)) → LIST_IN_G(Xs)
LIST_IN_G([]) → U3_G(true_in_)
LIST_IN_G([]) → TRUE_IN_
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
LIST_IN_G(X) → TAIL_IN_GA(X, T)
U4_G(X, tail_out_ga(X, T)) → U5_G(X, list_in_g(T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
GOAL_IN_G(
x1) =
GOAL_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U6_GA(
x1,
x2) =
U6_GA(
x2)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U8_GA(
x1,
x2,
x3,
x4) =
U8_GA(
x1,
x4)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U3_G(
x1) =
U3_G(
x1)
TRUE_IN_ =
TRUE_IN_
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(48) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
GOAL_IN_G(X) → U1_G(X, s2l_in_ga(X, Xs))
GOAL_IN_G(X) → S2L_IN_GA(X, Xs)
S2L_IN_GA(0, L) → U6_GA(L, eq_in_ag(L, []))
S2L_IN_GA(0, L) → EQ_IN_AG(L, [])
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
S2L_IN_GA(X, .(X1, Xs)) → P_IN_GA(X, P)
U7_GA(X, X1, Xs, p_out_ga(X, P)) → U8_GA(X, X1, Xs, s2l_in_ga(P, Xs))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
U1_G(X, s2l_out_ga(X, Xs)) → U2_G(X, list_in_g(Xs))
U1_G(X, s2l_out_ga(X, Xs)) → LIST_IN_G(Xs)
LIST_IN_G([]) → U3_G(true_in_)
LIST_IN_G([]) → TRUE_IN_
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
LIST_IN_G(X) → TAIL_IN_GA(X, T)
U4_G(X, tail_out_ga(X, T)) → U5_G(X, list_in_g(T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
GOAL_IN_G(
x1) =
GOAL_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U6_GA(
x1,
x2) =
U6_GA(
x2)
EQ_IN_AG(
x1,
x2) =
EQ_IN_AG(
x2)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x1,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U8_GA(
x1,
x2,
x3,
x4) =
U8_GA(
x1,
x4)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U3_G(
x1) =
U3_G(
x1)
TRUE_IN_ =
TRUE_IN_
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
TAIL_IN_GA(
x1,
x2) =
TAIL_IN_GA(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(49) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 12 less nodes.
(50) Complex Obligation (AND)
(51) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(52) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(53) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(X, tail_in_ga(X, T))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
The argument filtering Pi contains the following mapping:
[] =
[]
.(
x1,
x2) =
.(
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
LIST_IN_G(
x1) =
LIST_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(54) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(55) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G(X) → U4_G(X, tail_in_ga(X))
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(56) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
LIST_IN_G(
X) →
U4_G(
X,
tail_in_ga(
X)) at position [1] we obtained the following new rules [LPAR04]:
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
(57) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
The TRS R consists of the following rules:
tail_in_ga([]) → tail_out_ga([], [])
tail_in_ga(.(Xs)) → tail_out_ga(.(Xs), Xs)
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(58) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(59) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
R is empty.
The set Q consists of the following terms:
tail_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(60) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
tail_in_ga(x0)
(61) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G(X, tail_out_ga(X, T)) → LIST_IN_G(T)
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(62) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U4_G(
X,
tail_out_ga(
X,
T)) →
LIST_IN_G(
T) we obtained the following new rules [LPAR04]:
U4_G([], tail_out_ga([], [])) → LIST_IN_G([])
U4_G(.(z0), tail_out_ga(.(z0), z0)) → LIST_IN_G(z0)
(63) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
U4_G([], tail_out_ga([], [])) → LIST_IN_G([])
U4_G(.(z0), tail_out_ga(.(z0), z0)) → LIST_IN_G(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(64) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(65) Complex Obligation (AND)
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U4_G([], tail_out_ga([], [])) → LIST_IN_G([])
LIST_IN_G([]) → U4_G([], tail_out_ga([], []))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(67) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
LIST_IN_G(
[]) evaluates to t =
LIST_IN_G(
[])
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceLIST_IN_G([]) →
U4_G(
[],
tail_out_ga(
[],
[]))
with rule
LIST_IN_G(
[]) →
U4_G(
[],
tail_out_ga(
[],
[])) at position [] and matcher [ ]
U4_G([], tail_out_ga([], [])) →
LIST_IN_G(
[])
with rule
U4_G(
[],
tail_out_ga(
[],
[])) →
LIST_IN_G(
[])
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(68) FALSE
(69) Obligation:
Q DP problem:
The TRS P consists of the following rules:
LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
U4_G(.(z0), tail_out_ga(.(z0), z0)) → LIST_IN_G(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(70) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U4_G(.(z0), tail_out_ga(.(z0), z0)) → LIST_IN_G(z0)
The graph contains the following edges 1 > 1, 2 > 1
- LIST_IN_G(.(x0)) → U4_G(.(x0), tail_out_ga(.(x0), x0))
The graph contains the following edges 1 >= 1
(71) TRUE
(72) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
The TRS R consists of the following rules:
goal_in_g(X) → U1_g(X, s2l_in_ga(X, Xs))
s2l_in_ga(0, L) → U6_ga(L, eq_in_ag(L, []))
eq_in_ag(X, X) → eq_out_ag(X, X)
U6_ga(L, eq_out_ag(L, [])) → s2l_out_ga(0, L)
s2l_in_ga(X, .(X1, Xs)) → U7_ga(X, X1, Xs, p_in_ga(X, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U7_ga(X, X1, Xs, p_out_ga(X, P)) → U8_ga(X, X1, Xs, s2l_in_ga(P, Xs))
U8_ga(X, X1, Xs, s2l_out_ga(P, Xs)) → s2l_out_ga(X, .(X1, Xs))
U1_g(X, s2l_out_ga(X, Xs)) → U2_g(X, list_in_g(Xs))
list_in_g([]) → U3_g(true_in_)
true_in_ → true_out_
U3_g(true_out_) → list_out_g([])
list_in_g(X) → U4_g(X, tail_in_ga(X, T))
tail_in_ga([], []) → tail_out_ga([], [])
tail_in_ga(.(X2, Xs), Xs) → tail_out_ga(.(X2, Xs), Xs)
U4_g(X, tail_out_ga(X, T)) → U5_g(X, list_in_g(T))
U5_g(X, list_out_g(T)) → list_out_g(X)
U2_g(X, list_out_g(Xs)) → goal_out_g(X)
The argument filtering Pi contains the following mapping:
goal_in_g(
x1) =
goal_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
s2l_in_ga(
x1,
x2) =
s2l_in_ga(
x1)
0 =
0
U6_ga(
x1,
x2) =
U6_ga(
x2)
eq_in_ag(
x1,
x2) =
eq_in_ag(
x2)
eq_out_ag(
x1,
x2) =
eq_out_ag(
x1,
x2)
[] =
[]
s2l_out_ga(
x1,
x2) =
s2l_out_ga(
x1,
x2)
U7_ga(
x1,
x2,
x3,
x4) =
U7_ga(
x1,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U8_ga(
x1,
x2,
x3,
x4) =
U8_ga(
x1,
x4)
.(
x1,
x2) =
.(
x2)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
list_in_g(
x1) =
list_in_g(
x1)
U3_g(
x1) =
U3_g(
x1)
true_in_ =
true_in_
true_out_ =
true_out_
list_out_g(
x1) =
list_out_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
tail_in_ga(
x1,
x2) =
tail_in_ga(
x1)
tail_out_ga(
x1,
x2) =
tail_out_ga(
x1,
x2)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
goal_out_g(
x1) =
goal_out_g(
x1)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(73) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(74) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X, .(X1, Xs)) → U7_GA(X, X1, Xs, p_in_ga(X, P))
U7_GA(X, X1, Xs, p_out_ga(X, P)) → S2L_IN_GA(P, Xs)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
.(
x1,
x2) =
.(
x2)
S2L_IN_GA(
x1,
x2) =
S2L_IN_GA(
x1)
U7_GA(
x1,
x2,
x3,
x4) =
U7_GA(
x1,
x4)
We have to consider all (P,R,Pi)-chains
(75) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(X) → U7_GA(X, p_in_ga(X))
U7_GA(X, p_out_ga(X, P)) → S2L_IN_GA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(77) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
S2L_IN_GA(
X) →
U7_GA(
X,
p_in_ga(
X)) at position [1] we obtained the following new rules [LPAR04]:
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
(78) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(X, p_out_ga(X, P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(79) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(80) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(X, p_out_ga(X, P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(81) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(82) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(X, p_out_ga(X, P)) → S2L_IN_GA(P)
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(83) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U7_GA(
X,
p_out_ga(
X,
P)) →
S2L_IN_GA(
P) we obtained the following new rules [LPAR04]:
U7_GA(0, p_out_ga(0, 0)) → S2L_IN_GA(0)
U7_GA(s(z0), p_out_ga(s(z0), z0)) → S2L_IN_GA(z0)
(84) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
U7_GA(0, p_out_ga(0, 0)) → S2L_IN_GA(0)
U7_GA(s(z0), p_out_ga(s(z0), z0)) → S2L_IN_GA(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(85) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(86) Complex Obligation (AND)
(87) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U7_GA(0, p_out_ga(0, 0)) → S2L_IN_GA(0)
S2L_IN_GA(0) → U7_GA(0, p_out_ga(0, 0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(88) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
S2L_IN_GA(
0) evaluates to t =
S2L_IN_GA(
0)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceS2L_IN_GA(0) →
U7_GA(
0,
p_out_ga(
0,
0))
with rule
S2L_IN_GA(
0) →
U7_GA(
0,
p_out_ga(
0,
0)) at position [] and matcher [ ]
U7_GA(0, p_out_ga(0, 0)) →
S2L_IN_GA(
0)
with rule
U7_GA(
0,
p_out_ga(
0,
0)) →
S2L_IN_GA(
0)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(89) FALSE
(90) Obligation:
Q DP problem:
The TRS P consists of the following rules:
S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
U7_GA(s(z0), p_out_ga(s(z0), z0)) → S2L_IN_GA(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(91) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U7_GA(s(z0), p_out_ga(s(z0), z0)) → S2L_IN_GA(z0)
The graph contains the following edges 1 > 1, 2 > 1
- S2L_IN_GA(s(x0)) → U7_GA(s(x0), p_out_ga(s(x0), x0))
The graph contains the following edges 1 >= 1
(92) TRUE