(0) Obligation:

Clauses:

add(X, 0, X) :- !.
add(X, Y, s(Z)) :- ','(p(Y, P), add(X, P, Z)).
p(0, 0).
p(s(X), X).

Queries:

add(a,g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

add12(T24, s(T25)) :- add12(T24, T25).
add1(T12, 0, s(T13)) :- add12(T12, T13).
add1(T12, s(T32), s(T13)) :- add1(T12, T32, T13).

Clauses:

addc12(T17, T17).
addc12(T24, s(T25)) :- addc12(T24, T25).
addc1(T5, 0, T5).
addc1(T12, 0, s(T13)) :- addc12(T12, T13).
addc1(T12, s(T32), s(T13)) :- addc1(T12, T32, T13).

Afs:

add1(x1, x2, x3)  =  add1(x2)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add1_in: (f,b,f)
add12_in: (f,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T12, 0, s(T13)) → U2_AGA(T12, T13, add12_in_aa(T12, T13))
ADD1_IN_AGA(T12, 0, s(T13)) → ADD12_IN_AA(T12, T13)
ADD12_IN_AA(T24, s(T25)) → U1_AA(T24, T25, add12_in_aa(T24, T25))
ADD12_IN_AA(T24, s(T25)) → ADD12_IN_AA(T24, T25)
ADD1_IN_AGA(T12, s(T32), s(T13)) → U3_AGA(T12, T32, T13, add1_in_aga(T12, T32, T13))
ADD1_IN_AGA(T12, s(T32), s(T13)) → ADD1_IN_AGA(T12, T32, T13)

R is empty.
The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add12_in_aa(x1, x2)  =  add12_in_aa
s(x1)  =  s(x1)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD12_IN_AA(x1, x2)  =  ADD12_IN_AA
U1_AA(x1, x2, x3)  =  U1_AA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T12, 0, s(T13)) → U2_AGA(T12, T13, add12_in_aa(T12, T13))
ADD1_IN_AGA(T12, 0, s(T13)) → ADD12_IN_AA(T12, T13)
ADD12_IN_AA(T24, s(T25)) → U1_AA(T24, T25, add12_in_aa(T24, T25))
ADD12_IN_AA(T24, s(T25)) → ADD12_IN_AA(T24, T25)
ADD1_IN_AGA(T12, s(T32), s(T13)) → U3_AGA(T12, T32, T13, add1_in_aga(T12, T32, T13))
ADD1_IN_AGA(T12, s(T32), s(T13)) → ADD1_IN_AGA(T12, T32, T13)

R is empty.
The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add12_in_aa(x1, x2)  =  add12_in_aa
s(x1)  =  s(x1)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD12_IN_AA(x1, x2)  =  ADD12_IN_AA
U1_AA(x1, x2, x3)  =  U1_AA(x3)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD12_IN_AA(T24, s(T25)) → ADD12_IN_AA(T24, T25)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD12_IN_AA(x1, x2)  =  ADD12_IN_AA

We have to consider all (P,R,Pi)-chains

(8) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD12_IN_AAADD12_IN_AA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(10) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = ADD12_IN_AA evaluates to t =ADD12_IN_AA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ADD12_IN_AA to ADD12_IN_AA.



(11) NO

(12) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T12, s(T32), s(T13)) → ADD1_IN_AGA(T12, T32, T13)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(13) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(s(T32)) → ADD1_IN_AGA(T32)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD1_IN_AGA(s(T32)) → ADD1_IN_AGA(T32)
    The graph contains the following edges 1 > 1

(16) YES