(0) Obligation:
Clauses:
add(X, 0, X) :- !.
add(X, Y, s(Z)) :- ','(p(Y, P), add(X, P, Z)).
p(0, 0).
p(s(X), X).
Queries:
add(a,g,a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
add10(T10, T10, X9).
add10(T13, s(T14), X9) :- add10(T13, T14, X18).
add1(T4, 0, T4).
add1(T10, 0, s(T10)).
add1(T13, 0, s(s(T14))) :- add10(T13, T14, X18).
add1(T8, s(T15), s(T9)) :- add1(T8, T15, T9).
Queries:
add1(a,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add1_in: (f,b,f)
add10_in: (f,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3) =
U2_AGA(
x3)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
U1_AAA(
x1,
x2,
x3,
x4) =
U1_AAA(
x4)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3) =
U2_AGA(
x3)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
U1_AAA(
x1,
x2,
x3,
x4) =
U1_AAA(
x4)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(8) Complex Obligation (AND)
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
We have to consider all (P,R,Pi)-chains
(10) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(11) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
We have to consider all (P,R,Pi)-chains
(12) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(13) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA → ADD10_IN_AAA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(14) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
ADD10_IN_AAA evaluates to t =
ADD10_IN_AAAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from ADD10_IN_AAA to ADD10_IN_AAA.
(15) FALSE
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(17) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(19) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
The graph contains the following edges 1 > 1
(22) TRUE
(23) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add1_in: (f,b,f)
add10_in: (f,f,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(24) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
(25) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3) =
U2_AGA(
x3)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
U1_AAA(
x1,
x2,
x3,
x4) =
U1_AAA(
x4)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(26) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3) =
U2_AGA(
x3)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
U1_AAA(
x1,
x2,
x3,
x4) =
U1_AAA(
x4)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(27) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.
(28) Complex Obligation (AND)
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
We have to consider all (P,R,Pi)-chains
(30) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(31) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD10_IN_AAA(
x1,
x2,
x3) =
ADD10_IN_AAA
We have to consider all (P,R,Pi)-chains
(32) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(33) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD10_IN_AAA → ADD10_IN_AAA
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(34) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
ADD10_IN_AAA evaluates to t =
ADD10_IN_AAAThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from ADD10_IN_AAA to ADD10_IN_AAA.
(35) FALSE
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
The TRS R consists of the following rules:
add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))
The argument filtering Pi contains the following mapping:
add1_in_aga(
x1,
x2,
x3) =
add1_in_aga(
x2)
0 =
0
add1_out_aga(
x1,
x2,
x3) =
add1_out_aga(
x2)
U2_aga(
x1,
x2,
x3) =
U2_aga(
x3)
add10_in_aaa(
x1,
x2,
x3) =
add10_in_aaa
add10_out_aaa(
x1,
x2,
x3) =
add10_out_aaa
U1_aaa(
x1,
x2,
x3,
x4) =
U1_aaa(
x4)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(37) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(38) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
ADD1_IN_AGA(
x1,
x2,
x3) =
ADD1_IN_AGA(
x2)
We have to consider all (P,R,Pi)-chains
(39) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
The graph contains the following edges 1 > 1
(42) TRUE