(0) Obligation:

Clauses:

add(X, 0, X) :- !.
add(X, Y, s(Z)) :- ','(p(Y, P), add(X, P, Z)).
p(0, 0).
p(s(X), X).

Queries:

add(a,g,a).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

add10(T10, T10, X9).
add10(T13, s(T14), X9) :- add10(T13, T14, X18).
add1(T4, 0, T4).
add1(T10, 0, s(T10)).
add1(T13, 0, s(s(T14))) :- add10(T13, T14, X18).
add1(T8, s(T15), s(T9)) :- add1(T8, T15, T9).

Queries:

add1(a,g,a).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add1_in: (f,b,f)
add10_in: (f,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x4)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA

We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAAADD10_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = ADD10_IN_AAA evaluates to t =ADD10_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ADD10_IN_AAA to ADD10_IN_AAA.



(15) FALSE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
    The graph contains the following edges 1 > 1

(22) TRUE

(23) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add1_in: (f,b,f)
add10_in: (f,f,f)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(24) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)

(25) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(26) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T13, 0, s(s(T14))) → U2_AGA(T13, T14, add10_in_aaa(T13, T14, X18))
ADD1_IN_AGA(T13, 0, s(s(T14))) → ADD10_IN_AAA(T13, T14, X18)
ADD10_IN_AAA(T13, s(T14), X9) → U1_AAA(T13, T14, X9, add10_in_aaa(T13, T14, X18))
ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)
ADD1_IN_AGA(T8, s(T15), s(T9)) → U3_AGA(T8, T15, T9, add1_in_aga(T8, T15, T9))
ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)
U2_AGA(x1, x2, x3)  =  U2_AGA(x3)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA
U1_AAA(x1, x2, x3, x4)  =  U1_AAA(x4)
U3_AGA(x1, x2, x3, x4)  =  U3_AGA(x2, x4)

We have to consider all (P,R,Pi)-chains

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 4 less nodes.

(28) Complex Obligation (AND)

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA

We have to consider all (P,R,Pi)-chains

(30) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(31) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAA(T13, s(T14), X9) → ADD10_IN_AAA(T13, T14, X18)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD10_IN_AAA(x1, x2, x3)  =  ADD10_IN_AAA

We have to consider all (P,R,Pi)-chains

(32) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD10_IN_AAAADD10_IN_AAA

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(34) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = ADD10_IN_AAA evaluates to t =ADD10_IN_AAA

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from ADD10_IN_AAA to ADD10_IN_AAA.



(35) FALSE

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

The TRS R consists of the following rules:

add1_in_aga(T4, 0, T4) → add1_out_aga(T4, 0, T4)
add1_in_aga(T10, 0, s(T10)) → add1_out_aga(T10, 0, s(T10))
add1_in_aga(T13, 0, s(s(T14))) → U2_aga(T13, T14, add10_in_aaa(T13, T14, X18))
add10_in_aaa(T10, T10, X9) → add10_out_aaa(T10, T10, X9)
add10_in_aaa(T13, s(T14), X9) → U1_aaa(T13, T14, X9, add10_in_aaa(T13, T14, X18))
U1_aaa(T13, T14, X9, add10_out_aaa(T13, T14, X18)) → add10_out_aaa(T13, s(T14), X9)
U2_aga(T13, T14, add10_out_aaa(T13, T14, X18)) → add1_out_aga(T13, 0, s(s(T14)))
add1_in_aga(T8, s(T15), s(T9)) → U3_aga(T8, T15, T9, add1_in_aga(T8, T15, T9))
U3_aga(T8, T15, T9, add1_out_aga(T8, T15, T9)) → add1_out_aga(T8, s(T15), s(T9))

The argument filtering Pi contains the following mapping:
add1_in_aga(x1, x2, x3)  =  add1_in_aga(x2)
0  =  0
add1_out_aga(x1, x2, x3)  =  add1_out_aga(x2)
U2_aga(x1, x2, x3)  =  U2_aga(x3)
add10_in_aaa(x1, x2, x3)  =  add10_in_aaa
add10_out_aaa(x1, x2, x3)  =  add10_out_aaa
U1_aaa(x1, x2, x3, x4)  =  U1_aaa(x4)
s(x1)  =  s(x1)
U3_aga(x1, x2, x3, x4)  =  U3_aga(x2, x4)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(37) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(T8, s(T15), s(T9)) → ADD1_IN_AGA(T8, T15, T9)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
ADD1_IN_AGA(x1, x2, x3)  =  ADD1_IN_AGA(x2)

We have to consider all (P,R,Pi)-chains

(39) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(41) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • ADD1_IN_AGA(s(T15)) → ADD1_IN_AGA(T15)
    The graph contains the following edges 1 > 1

(42) TRUE