(0) Obligation:
Clauses:
add(X, 0, Y) :- ','(!, eq(X, Y)).
add(X, Y, s(Z)) :- ','(p(Y, P), add(X, P, Z)).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
add(a,g,a).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
add(X, 0, Y) :- eq(X, Y).
add(X, Y, s(Z)) :- ','(p(Y, P), add(X, P, Z)).
p(0, 0).
p(s(X), X).
eq(X, X).
Queries:
add(a,g,a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add_in: (f,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, 0, Y) → U1_AGA(X, Y, eq_in_aa(X, Y))
ADD_IN_AGA(X, 0, Y) → EQ_IN_AA(X, Y)
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
ADD_IN_AGA(X, Y, s(Z)) → P_IN_GA(Y, P)
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → U3_AGA(X, Y, Z, add_in_aga(X, P, Z))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3) =
U1_AGA(
x3)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, 0, Y) → U1_AGA(X, Y, eq_in_aa(X, Y))
ADD_IN_AGA(X, 0, Y) → EQ_IN_AA(X, Y)
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
ADD_IN_AGA(X, Y, s(Z)) → P_IN_GA(Y, P)
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → U3_AGA(X, Y, Z, add_in_aga(X, P, Z))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3) =
U1_AGA(
x3)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x4)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(Y) → U2_AGA(p_in_ga(Y))
U2_AGA(p_out_ga(P)) → ADD_IN_AGA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(ADD_IN_AGA(x1)) = x1
POL(U2_AGA(x1)) = x1
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 2·x1
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(Y) → U2_AGA(p_in_ga(Y))
U2_AGA(p_out_ga(P)) → ADD_IN_AGA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(15) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
ADD_IN_AGA(
Y) →
U2_AGA(
p_in_ga(
Y)) at position [0] we obtained the following new rules [LPAR04]:
ADD_IN_AGA(0) → U2_AGA(p_out_ga(0))
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(p_out_ga(P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(p_out_ga(0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(p_out_ga(P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(p_out_ga(0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(p_out_ga(P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(p_out_ga(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(21) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_AGA(
p_out_ga(
P)) →
ADD_IN_AGA(
P) we obtained the following new rules [LPAR04]:
U2_AGA(p_out_ga(0)) → ADD_IN_AGA(0)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(0) → U2_AGA(p_out_ga(0))
U2_AGA(p_out_ga(0)) → ADD_IN_AGA(0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(23) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_AGA(
p_out_ga(
0)) evaluates to t =
U2_AGA(
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU2_AGA(p_out_ga(0)) →
ADD_IN_AGA(
0)
with rule
U2_AGA(
p_out_ga(
0)) →
ADD_IN_AGA(
0) at position [] and matcher [ ]
ADD_IN_AGA(0) →
U2_AGA(
p_out_ga(
0))
with rule
ADD_IN_AGA(
0) →
U2_AGA(
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(24) FALSE
(25) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
add_in: (f,b,f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga(
x2)
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(26) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga(
x2)
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
(27) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, 0, Y) → U1_AGA(X, Y, eq_in_aa(X, Y))
ADD_IN_AGA(X, 0, Y) → EQ_IN_AA(X, Y)
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
ADD_IN_AGA(X, Y, s(Z)) → P_IN_GA(Y, P)
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → U3_AGA(X, Y, Z, add_in_aga(X, P, Z))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga(
x2)
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3) =
U1_AGA(
x3)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x2,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(28) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, 0, Y) → U1_AGA(X, Y, eq_in_aa(X, Y))
ADD_IN_AGA(X, 0, Y) → EQ_IN_AA(X, Y)
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
ADD_IN_AGA(X, Y, s(Z)) → P_IN_GA(Y, P)
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → U3_AGA(X, Y, Z, add_in_aga(X, P, Z))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga(
x2)
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U1_AGA(
x1,
x2,
x3) =
U1_AGA(
x3)
EQ_IN_AA(
x1,
x2) =
EQ_IN_AA
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x2,
x4)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_AGA(
x1,
x2,
x3,
x4) =
U3_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(29) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 4 less nodes.
(30) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
add_in_aga(X, 0, Y) → U1_aga(X, Y, eq_in_aa(X, Y))
eq_in_aa(X, X) → eq_out_aa(X, X)
U1_aga(X, Y, eq_out_aa(X, Y)) → add_out_aga(X, 0, Y)
add_in_aga(X, Y, s(Z)) → U2_aga(X, Y, Z, p_in_ga(Y, P))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_aga(X, Y, Z, p_out_ga(Y, P)) → U3_aga(X, Y, Z, add_in_aga(X, P, Z))
U3_aga(X, Y, Z, add_out_aga(X, P, Z)) → add_out_aga(X, Y, s(Z))
The argument filtering Pi contains the following mapping:
add_in_aga(
x1,
x2,
x3) =
add_in_aga(
x2)
0 =
0
U1_aga(
x1,
x2,
x3) =
U1_aga(
x3)
eq_in_aa(
x1,
x2) =
eq_in_aa
eq_out_aa(
x1,
x2) =
eq_out_aa
add_out_aga(
x1,
x2,
x3) =
add_out_aga(
x2)
U2_aga(
x1,
x2,
x3,
x4) =
U2_aga(
x2,
x4)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_aga(
x1,
x2,
x3,
x4) =
U3_aga(
x2,
x4)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(31) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(32) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(X, Y, s(Z)) → U2_AGA(X, Y, Z, p_in_ga(Y, P))
U2_AGA(X, Y, Z, p_out_ga(Y, P)) → ADD_IN_AGA(X, P, Z)
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
The argument filtering Pi contains the following mapping:
0 =
0
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
ADD_IN_AGA(
x1,
x2,
x3) =
ADD_IN_AGA(
x2)
U2_AGA(
x1,
x2,
x3,
x4) =
U2_AGA(
x2,
x4)
We have to consider all (P,R,Pi)-chains
(33) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(Y) → U2_AGA(Y, p_in_ga(Y))
U2_AGA(Y, p_out_ga(Y, P)) → ADD_IN_AGA(P)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(35) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
ADD_IN_AGA(
Y) →
U2_AGA(
Y,
p_in_ga(
Y)) at position [1] we obtained the following new rules [LPAR04]:
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(Y, p_out_ga(Y, P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(37) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(Y, p_out_ga(Y, P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(39) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(40) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(Y, p_out_ga(Y, P)) → ADD_IN_AGA(P)
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(41) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_AGA(
Y,
p_out_ga(
Y,
P)) →
ADD_IN_AGA(
P) we obtained the following new rules [LPAR04]:
U2_AGA(0, p_out_ga(0, 0)) → ADD_IN_AGA(0)
U2_AGA(s(z0), p_out_ga(s(z0), z0)) → ADD_IN_AGA(z0)
(42) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
U2_AGA(0, p_out_ga(0, 0)) → ADD_IN_AGA(0)
U2_AGA(s(z0), p_out_ga(s(z0), z0)) → ADD_IN_AGA(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 2 SCCs.
(44) Complex Obligation (AND)
(45) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_AGA(0, p_out_ga(0, 0)) → ADD_IN_AGA(0)
ADD_IN_AGA(0) → U2_AGA(0, p_out_ga(0, 0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(46) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
ADD_IN_AGA(
0) evaluates to t =
ADD_IN_AGA(
0)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceADD_IN_AGA(0) →
U2_AGA(
0,
p_out_ga(
0,
0))
with rule
ADD_IN_AGA(
0) →
U2_AGA(
0,
p_out_ga(
0,
0)) at position [] and matcher [ ]
U2_AGA(0, p_out_ga(0, 0)) →
ADD_IN_AGA(
0)
with rule
U2_AGA(
0,
p_out_ga(
0,
0)) →
ADD_IN_AGA(
0)
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(47) FALSE
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
U2_AGA(s(z0), p_out_ga(s(z0), z0)) → ADD_IN_AGA(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(49) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- U2_AGA(s(z0), p_out_ga(s(z0), z0)) → ADD_IN_AGA(z0)
The graph contains the following edges 1 > 1, 2 > 1
- ADD_IN_AGA(s(x0)) → U2_AGA(s(x0), p_out_ga(s(x0), x0))
The graph contains the following edges 1 >= 1
(50) TRUE