(0) Obligation:

Clauses:

goal(Name, Code) :- ','(eq(Name, .(First, Others)), ','(reduce(Others, s(0), First, Reduced), eq(Code, Reduced))).
reduce(X1, s(s(s(s(0)))), X2, []) :- !.
reduce([], X3, X4, []) :- !.
reduce(.(Current, Others), Count, Current, Code) :- ','(vowel_h_w_y(Current), ','(!, reduce(Others, Count, Current, Code))).
reduce(.(Letter, Others), Count, Letter, Code) :- ','(!, reduce(Others, Count, Letter, Code)).
reduce(.(Current, Others), Count, X5, .(Current, Code)) :- reduce(Others, s(Count), Current, Code).
vowel_h_w_y(97).
vowel_h_w_y(101).
vowel_h_w_y(105).
vowel_h_w_y(111).
vowel_h_w_y(117).
vowel_h_w_y(104).
vowel_h_w_y(119).
vowel_h_w_y(121).
eq(X, X).

Queries:

goal(g,a).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

reduce7(.(97, T35), 97, X59) :- reduce7(T35, 97, X59).
reduce7(.(101, T35), 101, X59) :- reduce7(T35, 101, X59).
reduce7(.(105, T35), 105, X59) :- reduce7(T35, 105, X59).
reduce7(.(111, T35), 111, X59) :- reduce7(T35, 111, X59).
reduce7(.(117, T35), 117, X59) :- reduce7(T35, 117, X59).
reduce7(.(104, T35), 104, X59) :- reduce7(T35, 104, X59).
reduce7(.(119, T35), 119, X59) :- reduce7(T35, 119, X59).
reduce7(.(121, T35), 121, X59) :- reduce7(T35, 121, X59).
reduce7(.(T52, T53), T52, X120) :- reduce7(T53, T52, X120).
reduce7(.(T62, T63), T64, .(T62, X146)) :- reduce49(T63, T62, X146).
reduce49(.(97, T80), 97, X190) :- reduce49(T80, 97, X190).
reduce49(.(101, T80), 101, X190) :- reduce49(T80, 101, X190).
reduce49(.(105, T80), 105, X190) :- reduce49(T80, 105, X190).
reduce49(.(111, T80), 111, X190) :- reduce49(T80, 111, X190).
reduce49(.(117, T80), 117, X190) :- reduce49(T80, 117, X190).
reduce49(.(104, T80), 104, X190) :- reduce49(T80, 104, X190).
reduce49(.(119, T80), 119, X190) :- reduce49(T80, 119, X190).
reduce49(.(121, T80), 121, X190) :- reduce49(T80, 121, X190).
reduce49(.(T97, T98), T97, X251) :- reduce49(T98, T97, X251).
reduce49(.(T107, T108), T109, .(T107, X277)) :- reduce91(T108, T107, X277).
reduce91(.(97, T125), 97, X321) :- reduce91(T125, 97, X321).
reduce91(.(101, T125), 101, X321) :- reduce91(T125, 101, X321).
reduce91(.(105, T125), 105, X321) :- reduce91(T125, 105, X321).
reduce91(.(111, T125), 111, X321) :- reduce91(T125, 111, X321).
reduce91(.(117, T125), 117, X321) :- reduce91(T125, 117, X321).
reduce91(.(104, T125), 104, X321) :- reduce91(T125, 104, X321).
reduce91(.(119, T125), 119, X321) :- reduce91(T125, 119, X321).
reduce91(.(121, T125), 121, X321) :- reduce91(T125, 121, X321).
reduce91(.(T142, T143), T142, X382) :- reduce91(T143, T142, X382).
goal1(.(T15, T16), T7) :- reduce7(T16, T15, X12).

Clauses:

reducec7([], T25, []).
reducec7(.(97, T35), 97, X59) :- reducec7(T35, 97, X59).
reducec7(.(101, T35), 101, X59) :- reducec7(T35, 101, X59).
reducec7(.(105, T35), 105, X59) :- reducec7(T35, 105, X59).
reducec7(.(111, T35), 111, X59) :- reducec7(T35, 111, X59).
reducec7(.(117, T35), 117, X59) :- reducec7(T35, 117, X59).
reducec7(.(104, T35), 104, X59) :- reducec7(T35, 104, X59).
reducec7(.(119, T35), 119, X59) :- reducec7(T35, 119, X59).
reducec7(.(121, T35), 121, X59) :- reducec7(T35, 121, X59).
reducec7(.(T52, T53), T52, X120) :- reducec7(T53, T52, X120).
reducec7(.(T62, T63), T64, .(T62, X146)) :- reducec49(T63, T62, X146).
reducec49([], T70, []).
reducec49(.(97, T80), 97, X190) :- reducec49(T80, 97, X190).
reducec49(.(101, T80), 101, X190) :- reducec49(T80, 101, X190).
reducec49(.(105, T80), 105, X190) :- reducec49(T80, 105, X190).
reducec49(.(111, T80), 111, X190) :- reducec49(T80, 111, X190).
reducec49(.(117, T80), 117, X190) :- reducec49(T80, 117, X190).
reducec49(.(104, T80), 104, X190) :- reducec49(T80, 104, X190).
reducec49(.(119, T80), 119, X190) :- reducec49(T80, 119, X190).
reducec49(.(121, T80), 121, X190) :- reducec49(T80, 121, X190).
reducec49(.(T97, T98), T97, X251) :- reducec49(T98, T97, X251).
reducec49(.(T107, T108), T109, .(T107, X277)) :- reducec91(T108, T107, X277).
reducec91([], T115, []).
reducec91(.(97, T125), 97, X321) :- reducec91(T125, 97, X321).
reducec91(.(101, T125), 101, X321) :- reducec91(T125, 101, X321).
reducec91(.(105, T125), 105, X321) :- reducec91(T125, 105, X321).
reducec91(.(111, T125), 111, X321) :- reducec91(T125, 111, X321).
reducec91(.(117, T125), 117, X321) :- reducec91(T125, 117, X321).
reducec91(.(104, T125), 104, X321) :- reducec91(T125, 104, X321).
reducec91(.(119, T125), 119, X321) :- reducec91(T125, 119, X321).
reducec91(.(121, T125), 121, X321) :- reducec91(T125, 121, X321).
reducec91(.(T142, T143), T142, X382) :- reducec91(T143, T142, X382).
reducec91(.(T162, T161), T154, .(T162, [])).

Afs:

goal1(x1, x2)  =  goal1(x1)

(3) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
goal1_in: (b,f)
reduce7_in: (b,b,f)
reduce49_in: (b,b,f)
reduce91_in: (b,b,f)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_GA(.(T15, T16), T7) → U30_GA(T15, T16, T7, reduce7_in_gga(T16, T15, X12))
GOAL1_IN_GA(.(T15, T16), T7) → REDUCE7_IN_GGA(T16, T15, X12)
REDUCE7_IN_GGA(.(97, T35), 97, X59) → U1_GGA(T35, X59, reduce7_in_gga(T35, 97, X59))
REDUCE7_IN_GGA(.(97, T35), 97, X59) → REDUCE7_IN_GGA(T35, 97, X59)
REDUCE7_IN_GGA(.(101, T35), 101, X59) → U2_GGA(T35, X59, reduce7_in_gga(T35, 101, X59))
REDUCE7_IN_GGA(.(101, T35), 101, X59) → REDUCE7_IN_GGA(T35, 101, X59)
REDUCE7_IN_GGA(.(105, T35), 105, X59) → U3_GGA(T35, X59, reduce7_in_gga(T35, 105, X59))
REDUCE7_IN_GGA(.(105, T35), 105, X59) → REDUCE7_IN_GGA(T35, 105, X59)
REDUCE7_IN_GGA(.(111, T35), 111, X59) → U4_GGA(T35, X59, reduce7_in_gga(T35, 111, X59))
REDUCE7_IN_GGA(.(111, T35), 111, X59) → REDUCE7_IN_GGA(T35, 111, X59)
REDUCE7_IN_GGA(.(117, T35), 117, X59) → U5_GGA(T35, X59, reduce7_in_gga(T35, 117, X59))
REDUCE7_IN_GGA(.(117, T35), 117, X59) → REDUCE7_IN_GGA(T35, 117, X59)
REDUCE7_IN_GGA(.(104, T35), 104, X59) → U6_GGA(T35, X59, reduce7_in_gga(T35, 104, X59))
REDUCE7_IN_GGA(.(104, T35), 104, X59) → REDUCE7_IN_GGA(T35, 104, X59)
REDUCE7_IN_GGA(.(119, T35), 119, X59) → U7_GGA(T35, X59, reduce7_in_gga(T35, 119, X59))
REDUCE7_IN_GGA(.(119, T35), 119, X59) → REDUCE7_IN_GGA(T35, 119, X59)
REDUCE7_IN_GGA(.(121, T35), 121, X59) → U8_GGA(T35, X59, reduce7_in_gga(T35, 121, X59))
REDUCE7_IN_GGA(.(121, T35), 121, X59) → REDUCE7_IN_GGA(T35, 121, X59)
REDUCE7_IN_GGA(.(T52, T53), T52, X120) → U9_GGA(T52, T53, X120, reduce7_in_gga(T53, T52, X120))
REDUCE7_IN_GGA(.(T52, T53), T52, X120) → REDUCE7_IN_GGA(T53, T52, X120)
REDUCE7_IN_GGA(.(T62, T63), T64, .(T62, X146)) → U10_GGA(T62, T63, T64, X146, reduce49_in_gga(T63, T62, X146))
REDUCE7_IN_GGA(.(T62, T63), T64, .(T62, X146)) → REDUCE49_IN_GGA(T63, T62, X146)
REDUCE49_IN_GGA(.(97, T80), 97, X190) → U11_GGA(T80, X190, reduce49_in_gga(T80, 97, X190))
REDUCE49_IN_GGA(.(97, T80), 97, X190) → REDUCE49_IN_GGA(T80, 97, X190)
REDUCE49_IN_GGA(.(101, T80), 101, X190) → U12_GGA(T80, X190, reduce49_in_gga(T80, 101, X190))
REDUCE49_IN_GGA(.(101, T80), 101, X190) → REDUCE49_IN_GGA(T80, 101, X190)
REDUCE49_IN_GGA(.(105, T80), 105, X190) → U13_GGA(T80, X190, reduce49_in_gga(T80, 105, X190))
REDUCE49_IN_GGA(.(105, T80), 105, X190) → REDUCE49_IN_GGA(T80, 105, X190)
REDUCE49_IN_GGA(.(111, T80), 111, X190) → U14_GGA(T80, X190, reduce49_in_gga(T80, 111, X190))
REDUCE49_IN_GGA(.(111, T80), 111, X190) → REDUCE49_IN_GGA(T80, 111, X190)
REDUCE49_IN_GGA(.(117, T80), 117, X190) → U15_GGA(T80, X190, reduce49_in_gga(T80, 117, X190))
REDUCE49_IN_GGA(.(117, T80), 117, X190) → REDUCE49_IN_GGA(T80, 117, X190)
REDUCE49_IN_GGA(.(104, T80), 104, X190) → U16_GGA(T80, X190, reduce49_in_gga(T80, 104, X190))
REDUCE49_IN_GGA(.(104, T80), 104, X190) → REDUCE49_IN_GGA(T80, 104, X190)
REDUCE49_IN_GGA(.(119, T80), 119, X190) → U17_GGA(T80, X190, reduce49_in_gga(T80, 119, X190))
REDUCE49_IN_GGA(.(119, T80), 119, X190) → REDUCE49_IN_GGA(T80, 119, X190)
REDUCE49_IN_GGA(.(121, T80), 121, X190) → U18_GGA(T80, X190, reduce49_in_gga(T80, 121, X190))
REDUCE49_IN_GGA(.(121, T80), 121, X190) → REDUCE49_IN_GGA(T80, 121, X190)
REDUCE49_IN_GGA(.(T97, T98), T97, X251) → U19_GGA(T97, T98, X251, reduce49_in_gga(T98, T97, X251))
REDUCE49_IN_GGA(.(T97, T98), T97, X251) → REDUCE49_IN_GGA(T98, T97, X251)
REDUCE49_IN_GGA(.(T107, T108), T109, .(T107, X277)) → U20_GGA(T107, T108, T109, X277, reduce91_in_gga(T108, T107, X277))
REDUCE49_IN_GGA(.(T107, T108), T109, .(T107, X277)) → REDUCE91_IN_GGA(T108, T107, X277)
REDUCE91_IN_GGA(.(97, T125), 97, X321) → U21_GGA(T125, X321, reduce91_in_gga(T125, 97, X321))
REDUCE91_IN_GGA(.(97, T125), 97, X321) → REDUCE91_IN_GGA(T125, 97, X321)
REDUCE91_IN_GGA(.(101, T125), 101, X321) → U22_GGA(T125, X321, reduce91_in_gga(T125, 101, X321))
REDUCE91_IN_GGA(.(101, T125), 101, X321) → REDUCE91_IN_GGA(T125, 101, X321)
REDUCE91_IN_GGA(.(105, T125), 105, X321) → U23_GGA(T125, X321, reduce91_in_gga(T125, 105, X321))
REDUCE91_IN_GGA(.(105, T125), 105, X321) → REDUCE91_IN_GGA(T125, 105, X321)
REDUCE91_IN_GGA(.(111, T125), 111, X321) → U24_GGA(T125, X321, reduce91_in_gga(T125, 111, X321))
REDUCE91_IN_GGA(.(111, T125), 111, X321) → REDUCE91_IN_GGA(T125, 111, X321)
REDUCE91_IN_GGA(.(117, T125), 117, X321) → U25_GGA(T125, X321, reduce91_in_gga(T125, 117, X321))
REDUCE91_IN_GGA(.(117, T125), 117, X321) → REDUCE91_IN_GGA(T125, 117, X321)
REDUCE91_IN_GGA(.(104, T125), 104, X321) → U26_GGA(T125, X321, reduce91_in_gga(T125, 104, X321))
REDUCE91_IN_GGA(.(104, T125), 104, X321) → REDUCE91_IN_GGA(T125, 104, X321)
REDUCE91_IN_GGA(.(119, T125), 119, X321) → U27_GGA(T125, X321, reduce91_in_gga(T125, 119, X321))
REDUCE91_IN_GGA(.(119, T125), 119, X321) → REDUCE91_IN_GGA(T125, 119, X321)
REDUCE91_IN_GGA(.(121, T125), 121, X321) → U28_GGA(T125, X321, reduce91_in_gga(T125, 121, X321))
REDUCE91_IN_GGA(.(121, T125), 121, X321) → REDUCE91_IN_GGA(T125, 121, X321)
REDUCE91_IN_GGA(.(T142, T143), T142, X382) → U29_GGA(T142, T143, X382, reduce91_in_gga(T143, T142, X382))
REDUCE91_IN_GGA(.(T142, T143), T142, X382) → REDUCE91_IN_GGA(T143, T142, X382)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
reduce7_in_gga(x1, x2, x3)  =  reduce7_in_gga(x1, x2)
97  =  97
101  =  101
105  =  105
111  =  111
117  =  117
104  =  104
119  =  119
121  =  121
reduce49_in_gga(x1, x2, x3)  =  reduce49_in_gga(x1, x2)
reduce91_in_gga(x1, x2, x3)  =  reduce91_in_gga(x1, x2)
GOAL1_IN_GA(x1, x2)  =  GOAL1_IN_GA(x1)
U30_GA(x1, x2, x3, x4)  =  U30_GA(x1, x2, x4)
REDUCE7_IN_GGA(x1, x2, x3)  =  REDUCE7_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x3)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)
U6_GGA(x1, x2, x3)  =  U6_GGA(x1, x3)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x3)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
REDUCE49_IN_GGA(x1, x2, x3)  =  REDUCE49_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3)  =  U11_GGA(x1, x3)
U12_GGA(x1, x2, x3)  =  U12_GGA(x1, x3)
U13_GGA(x1, x2, x3)  =  U13_GGA(x1, x3)
U14_GGA(x1, x2, x3)  =  U14_GGA(x1, x3)
U15_GGA(x1, x2, x3)  =  U15_GGA(x1, x3)
U16_GGA(x1, x2, x3)  =  U16_GGA(x1, x3)
U17_GGA(x1, x2, x3)  =  U17_GGA(x1, x3)
U18_GGA(x1, x2, x3)  =  U18_GGA(x1, x3)
U19_GGA(x1, x2, x3, x4)  =  U19_GGA(x1, x2, x4)
U20_GGA(x1, x2, x3, x4, x5)  =  U20_GGA(x1, x2, x3, x5)
REDUCE91_IN_GGA(x1, x2, x3)  =  REDUCE91_IN_GGA(x1, x2)
U21_GGA(x1, x2, x3)  =  U21_GGA(x1, x3)
U22_GGA(x1, x2, x3)  =  U22_GGA(x1, x3)
U23_GGA(x1, x2, x3)  =  U23_GGA(x1, x3)
U24_GGA(x1, x2, x3)  =  U24_GGA(x1, x3)
U25_GGA(x1, x2, x3)  =  U25_GGA(x1, x3)
U26_GGA(x1, x2, x3)  =  U26_GGA(x1, x3)
U27_GGA(x1, x2, x3)  =  U27_GGA(x1, x3)
U28_GGA(x1, x2, x3)  =  U28_GGA(x1, x3)
U29_GGA(x1, x2, x3, x4)  =  U29_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(4) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

GOAL1_IN_GA(.(T15, T16), T7) → U30_GA(T15, T16, T7, reduce7_in_gga(T16, T15, X12))
GOAL1_IN_GA(.(T15, T16), T7) → REDUCE7_IN_GGA(T16, T15, X12)
REDUCE7_IN_GGA(.(97, T35), 97, X59) → U1_GGA(T35, X59, reduce7_in_gga(T35, 97, X59))
REDUCE7_IN_GGA(.(97, T35), 97, X59) → REDUCE7_IN_GGA(T35, 97, X59)
REDUCE7_IN_GGA(.(101, T35), 101, X59) → U2_GGA(T35, X59, reduce7_in_gga(T35, 101, X59))
REDUCE7_IN_GGA(.(101, T35), 101, X59) → REDUCE7_IN_GGA(T35, 101, X59)
REDUCE7_IN_GGA(.(105, T35), 105, X59) → U3_GGA(T35, X59, reduce7_in_gga(T35, 105, X59))
REDUCE7_IN_GGA(.(105, T35), 105, X59) → REDUCE7_IN_GGA(T35, 105, X59)
REDUCE7_IN_GGA(.(111, T35), 111, X59) → U4_GGA(T35, X59, reduce7_in_gga(T35, 111, X59))
REDUCE7_IN_GGA(.(111, T35), 111, X59) → REDUCE7_IN_GGA(T35, 111, X59)
REDUCE7_IN_GGA(.(117, T35), 117, X59) → U5_GGA(T35, X59, reduce7_in_gga(T35, 117, X59))
REDUCE7_IN_GGA(.(117, T35), 117, X59) → REDUCE7_IN_GGA(T35, 117, X59)
REDUCE7_IN_GGA(.(104, T35), 104, X59) → U6_GGA(T35, X59, reduce7_in_gga(T35, 104, X59))
REDUCE7_IN_GGA(.(104, T35), 104, X59) → REDUCE7_IN_GGA(T35, 104, X59)
REDUCE7_IN_GGA(.(119, T35), 119, X59) → U7_GGA(T35, X59, reduce7_in_gga(T35, 119, X59))
REDUCE7_IN_GGA(.(119, T35), 119, X59) → REDUCE7_IN_GGA(T35, 119, X59)
REDUCE7_IN_GGA(.(121, T35), 121, X59) → U8_GGA(T35, X59, reduce7_in_gga(T35, 121, X59))
REDUCE7_IN_GGA(.(121, T35), 121, X59) → REDUCE7_IN_GGA(T35, 121, X59)
REDUCE7_IN_GGA(.(T52, T53), T52, X120) → U9_GGA(T52, T53, X120, reduce7_in_gga(T53, T52, X120))
REDUCE7_IN_GGA(.(T52, T53), T52, X120) → REDUCE7_IN_GGA(T53, T52, X120)
REDUCE7_IN_GGA(.(T62, T63), T64, .(T62, X146)) → U10_GGA(T62, T63, T64, X146, reduce49_in_gga(T63, T62, X146))
REDUCE7_IN_GGA(.(T62, T63), T64, .(T62, X146)) → REDUCE49_IN_GGA(T63, T62, X146)
REDUCE49_IN_GGA(.(97, T80), 97, X190) → U11_GGA(T80, X190, reduce49_in_gga(T80, 97, X190))
REDUCE49_IN_GGA(.(97, T80), 97, X190) → REDUCE49_IN_GGA(T80, 97, X190)
REDUCE49_IN_GGA(.(101, T80), 101, X190) → U12_GGA(T80, X190, reduce49_in_gga(T80, 101, X190))
REDUCE49_IN_GGA(.(101, T80), 101, X190) → REDUCE49_IN_GGA(T80, 101, X190)
REDUCE49_IN_GGA(.(105, T80), 105, X190) → U13_GGA(T80, X190, reduce49_in_gga(T80, 105, X190))
REDUCE49_IN_GGA(.(105, T80), 105, X190) → REDUCE49_IN_GGA(T80, 105, X190)
REDUCE49_IN_GGA(.(111, T80), 111, X190) → U14_GGA(T80, X190, reduce49_in_gga(T80, 111, X190))
REDUCE49_IN_GGA(.(111, T80), 111, X190) → REDUCE49_IN_GGA(T80, 111, X190)
REDUCE49_IN_GGA(.(117, T80), 117, X190) → U15_GGA(T80, X190, reduce49_in_gga(T80, 117, X190))
REDUCE49_IN_GGA(.(117, T80), 117, X190) → REDUCE49_IN_GGA(T80, 117, X190)
REDUCE49_IN_GGA(.(104, T80), 104, X190) → U16_GGA(T80, X190, reduce49_in_gga(T80, 104, X190))
REDUCE49_IN_GGA(.(104, T80), 104, X190) → REDUCE49_IN_GGA(T80, 104, X190)
REDUCE49_IN_GGA(.(119, T80), 119, X190) → U17_GGA(T80, X190, reduce49_in_gga(T80, 119, X190))
REDUCE49_IN_GGA(.(119, T80), 119, X190) → REDUCE49_IN_GGA(T80, 119, X190)
REDUCE49_IN_GGA(.(121, T80), 121, X190) → U18_GGA(T80, X190, reduce49_in_gga(T80, 121, X190))
REDUCE49_IN_GGA(.(121, T80), 121, X190) → REDUCE49_IN_GGA(T80, 121, X190)
REDUCE49_IN_GGA(.(T97, T98), T97, X251) → U19_GGA(T97, T98, X251, reduce49_in_gga(T98, T97, X251))
REDUCE49_IN_GGA(.(T97, T98), T97, X251) → REDUCE49_IN_GGA(T98, T97, X251)
REDUCE49_IN_GGA(.(T107, T108), T109, .(T107, X277)) → U20_GGA(T107, T108, T109, X277, reduce91_in_gga(T108, T107, X277))
REDUCE49_IN_GGA(.(T107, T108), T109, .(T107, X277)) → REDUCE91_IN_GGA(T108, T107, X277)
REDUCE91_IN_GGA(.(97, T125), 97, X321) → U21_GGA(T125, X321, reduce91_in_gga(T125, 97, X321))
REDUCE91_IN_GGA(.(97, T125), 97, X321) → REDUCE91_IN_GGA(T125, 97, X321)
REDUCE91_IN_GGA(.(101, T125), 101, X321) → U22_GGA(T125, X321, reduce91_in_gga(T125, 101, X321))
REDUCE91_IN_GGA(.(101, T125), 101, X321) → REDUCE91_IN_GGA(T125, 101, X321)
REDUCE91_IN_GGA(.(105, T125), 105, X321) → U23_GGA(T125, X321, reduce91_in_gga(T125, 105, X321))
REDUCE91_IN_GGA(.(105, T125), 105, X321) → REDUCE91_IN_GGA(T125, 105, X321)
REDUCE91_IN_GGA(.(111, T125), 111, X321) → U24_GGA(T125, X321, reduce91_in_gga(T125, 111, X321))
REDUCE91_IN_GGA(.(111, T125), 111, X321) → REDUCE91_IN_GGA(T125, 111, X321)
REDUCE91_IN_GGA(.(117, T125), 117, X321) → U25_GGA(T125, X321, reduce91_in_gga(T125, 117, X321))
REDUCE91_IN_GGA(.(117, T125), 117, X321) → REDUCE91_IN_GGA(T125, 117, X321)
REDUCE91_IN_GGA(.(104, T125), 104, X321) → U26_GGA(T125, X321, reduce91_in_gga(T125, 104, X321))
REDUCE91_IN_GGA(.(104, T125), 104, X321) → REDUCE91_IN_GGA(T125, 104, X321)
REDUCE91_IN_GGA(.(119, T125), 119, X321) → U27_GGA(T125, X321, reduce91_in_gga(T125, 119, X321))
REDUCE91_IN_GGA(.(119, T125), 119, X321) → REDUCE91_IN_GGA(T125, 119, X321)
REDUCE91_IN_GGA(.(121, T125), 121, X321) → U28_GGA(T125, X321, reduce91_in_gga(T125, 121, X321))
REDUCE91_IN_GGA(.(121, T125), 121, X321) → REDUCE91_IN_GGA(T125, 121, X321)
REDUCE91_IN_GGA(.(T142, T143), T142, X382) → U29_GGA(T142, T143, X382, reduce91_in_gga(T143, T142, X382))
REDUCE91_IN_GGA(.(T142, T143), T142, X382) → REDUCE91_IN_GGA(T143, T142, X382)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
reduce7_in_gga(x1, x2, x3)  =  reduce7_in_gga(x1, x2)
97  =  97
101  =  101
105  =  105
111  =  111
117  =  117
104  =  104
119  =  119
121  =  121
reduce49_in_gga(x1, x2, x3)  =  reduce49_in_gga(x1, x2)
reduce91_in_gga(x1, x2, x3)  =  reduce91_in_gga(x1, x2)
GOAL1_IN_GA(x1, x2)  =  GOAL1_IN_GA(x1)
U30_GA(x1, x2, x3, x4)  =  U30_GA(x1, x2, x4)
REDUCE7_IN_GGA(x1, x2, x3)  =  REDUCE7_IN_GGA(x1, x2)
U1_GGA(x1, x2, x3)  =  U1_GGA(x1, x3)
U2_GGA(x1, x2, x3)  =  U2_GGA(x1, x3)
U3_GGA(x1, x2, x3)  =  U3_GGA(x1, x3)
U4_GGA(x1, x2, x3)  =  U4_GGA(x1, x3)
U5_GGA(x1, x2, x3)  =  U5_GGA(x1, x3)
U6_GGA(x1, x2, x3)  =  U6_GGA(x1, x3)
U7_GGA(x1, x2, x3)  =  U7_GGA(x1, x3)
U8_GGA(x1, x2, x3)  =  U8_GGA(x1, x3)
U9_GGA(x1, x2, x3, x4)  =  U9_GGA(x1, x2, x4)
U10_GGA(x1, x2, x3, x4, x5)  =  U10_GGA(x1, x2, x3, x5)
REDUCE49_IN_GGA(x1, x2, x3)  =  REDUCE49_IN_GGA(x1, x2)
U11_GGA(x1, x2, x3)  =  U11_GGA(x1, x3)
U12_GGA(x1, x2, x3)  =  U12_GGA(x1, x3)
U13_GGA(x1, x2, x3)  =  U13_GGA(x1, x3)
U14_GGA(x1, x2, x3)  =  U14_GGA(x1, x3)
U15_GGA(x1, x2, x3)  =  U15_GGA(x1, x3)
U16_GGA(x1, x2, x3)  =  U16_GGA(x1, x3)
U17_GGA(x1, x2, x3)  =  U17_GGA(x1, x3)
U18_GGA(x1, x2, x3)  =  U18_GGA(x1, x3)
U19_GGA(x1, x2, x3, x4)  =  U19_GGA(x1, x2, x4)
U20_GGA(x1, x2, x3, x4, x5)  =  U20_GGA(x1, x2, x3, x5)
REDUCE91_IN_GGA(x1, x2, x3)  =  REDUCE91_IN_GGA(x1, x2)
U21_GGA(x1, x2, x3)  =  U21_GGA(x1, x3)
U22_GGA(x1, x2, x3)  =  U22_GGA(x1, x3)
U23_GGA(x1, x2, x3)  =  U23_GGA(x1, x3)
U24_GGA(x1, x2, x3)  =  U24_GGA(x1, x3)
U25_GGA(x1, x2, x3)  =  U25_GGA(x1, x3)
U26_GGA(x1, x2, x3)  =  U26_GGA(x1, x3)
U27_GGA(x1, x2, x3)  =  U27_GGA(x1, x3)
U28_GGA(x1, x2, x3)  =  U28_GGA(x1, x3)
U29_GGA(x1, x2, x3, x4)  =  U29_GGA(x1, x2, x4)

We have to consider all (P,R,Pi)-chains

(5) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 33 less nodes.

(6) Complex Obligation (AND)

(7) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REDUCE91_IN_GGA(.(T142, T143), T142, X382) → REDUCE91_IN_GGA(T143, T142, X382)
REDUCE91_IN_GGA(.(97, T125), 97, X321) → REDUCE91_IN_GGA(T125, 97, X321)
REDUCE91_IN_GGA(.(101, T125), 101, X321) → REDUCE91_IN_GGA(T125, 101, X321)
REDUCE91_IN_GGA(.(105, T125), 105, X321) → REDUCE91_IN_GGA(T125, 105, X321)
REDUCE91_IN_GGA(.(111, T125), 111, X321) → REDUCE91_IN_GGA(T125, 111, X321)
REDUCE91_IN_GGA(.(117, T125), 117, X321) → REDUCE91_IN_GGA(T125, 117, X321)
REDUCE91_IN_GGA(.(104, T125), 104, X321) → REDUCE91_IN_GGA(T125, 104, X321)
REDUCE91_IN_GGA(.(119, T125), 119, X321) → REDUCE91_IN_GGA(T125, 119, X321)
REDUCE91_IN_GGA(.(121, T125), 121, X321) → REDUCE91_IN_GGA(T125, 121, X321)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
97  =  97
101  =  101
105  =  105
111  =  111
117  =  117
104  =  104
119  =  119
121  =  121
REDUCE91_IN_GGA(x1, x2, x3)  =  REDUCE91_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(8) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(9) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REDUCE91_IN_GGA(.(T142, T143), T142) → REDUCE91_IN_GGA(T143, T142)
REDUCE91_IN_GGA(.(97, T125), 97) → REDUCE91_IN_GGA(T125, 97)
REDUCE91_IN_GGA(.(101, T125), 101) → REDUCE91_IN_GGA(T125, 101)
REDUCE91_IN_GGA(.(105, T125), 105) → REDUCE91_IN_GGA(T125, 105)
REDUCE91_IN_GGA(.(111, T125), 111) → REDUCE91_IN_GGA(T125, 111)
REDUCE91_IN_GGA(.(117, T125), 117) → REDUCE91_IN_GGA(T125, 117)
REDUCE91_IN_GGA(.(104, T125), 104) → REDUCE91_IN_GGA(T125, 104)
REDUCE91_IN_GGA(.(119, T125), 119) → REDUCE91_IN_GGA(T125, 119)
REDUCE91_IN_GGA(.(121, T125), 121) → REDUCE91_IN_GGA(T125, 121)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(10) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REDUCE91_IN_GGA(.(T142, T143), T142) → REDUCE91_IN_GGA(T143, T142)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(97, T125), 97) → REDUCE91_IN_GGA(T125, 97)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(101, T125), 101) → REDUCE91_IN_GGA(T125, 101)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(105, T125), 105) → REDUCE91_IN_GGA(T125, 105)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(111, T125), 111) → REDUCE91_IN_GGA(T125, 111)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(117, T125), 117) → REDUCE91_IN_GGA(T125, 117)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(104, T125), 104) → REDUCE91_IN_GGA(T125, 104)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(119, T125), 119) → REDUCE91_IN_GGA(T125, 119)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE91_IN_GGA(.(121, T125), 121) → REDUCE91_IN_GGA(T125, 121)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

(11) YES

(12) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REDUCE49_IN_GGA(.(T97, T98), T97, X251) → REDUCE49_IN_GGA(T98, T97, X251)
REDUCE49_IN_GGA(.(97, T80), 97, X190) → REDUCE49_IN_GGA(T80, 97, X190)
REDUCE49_IN_GGA(.(101, T80), 101, X190) → REDUCE49_IN_GGA(T80, 101, X190)
REDUCE49_IN_GGA(.(105, T80), 105, X190) → REDUCE49_IN_GGA(T80, 105, X190)
REDUCE49_IN_GGA(.(111, T80), 111, X190) → REDUCE49_IN_GGA(T80, 111, X190)
REDUCE49_IN_GGA(.(117, T80), 117, X190) → REDUCE49_IN_GGA(T80, 117, X190)
REDUCE49_IN_GGA(.(104, T80), 104, X190) → REDUCE49_IN_GGA(T80, 104, X190)
REDUCE49_IN_GGA(.(119, T80), 119, X190) → REDUCE49_IN_GGA(T80, 119, X190)
REDUCE49_IN_GGA(.(121, T80), 121, X190) → REDUCE49_IN_GGA(T80, 121, X190)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
97  =  97
101  =  101
105  =  105
111  =  111
117  =  117
104  =  104
119  =  119
121  =  121
REDUCE49_IN_GGA(x1, x2, x3)  =  REDUCE49_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(13) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(14) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REDUCE49_IN_GGA(.(T97, T98), T97) → REDUCE49_IN_GGA(T98, T97)
REDUCE49_IN_GGA(.(97, T80), 97) → REDUCE49_IN_GGA(T80, 97)
REDUCE49_IN_GGA(.(101, T80), 101) → REDUCE49_IN_GGA(T80, 101)
REDUCE49_IN_GGA(.(105, T80), 105) → REDUCE49_IN_GGA(T80, 105)
REDUCE49_IN_GGA(.(111, T80), 111) → REDUCE49_IN_GGA(T80, 111)
REDUCE49_IN_GGA(.(117, T80), 117) → REDUCE49_IN_GGA(T80, 117)
REDUCE49_IN_GGA(.(104, T80), 104) → REDUCE49_IN_GGA(T80, 104)
REDUCE49_IN_GGA(.(119, T80), 119) → REDUCE49_IN_GGA(T80, 119)
REDUCE49_IN_GGA(.(121, T80), 121) → REDUCE49_IN_GGA(T80, 121)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(15) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REDUCE49_IN_GGA(.(T97, T98), T97) → REDUCE49_IN_GGA(T98, T97)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(97, T80), 97) → REDUCE49_IN_GGA(T80, 97)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(101, T80), 101) → REDUCE49_IN_GGA(T80, 101)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(105, T80), 105) → REDUCE49_IN_GGA(T80, 105)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(111, T80), 111) → REDUCE49_IN_GGA(T80, 111)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(117, T80), 117) → REDUCE49_IN_GGA(T80, 117)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(104, T80), 104) → REDUCE49_IN_GGA(T80, 104)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(119, T80), 119) → REDUCE49_IN_GGA(T80, 119)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE49_IN_GGA(.(121, T80), 121) → REDUCE49_IN_GGA(T80, 121)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

(16) YES

(17) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

REDUCE7_IN_GGA(.(T52, T53), T52, X120) → REDUCE7_IN_GGA(T53, T52, X120)
REDUCE7_IN_GGA(.(97, T35), 97, X59) → REDUCE7_IN_GGA(T35, 97, X59)
REDUCE7_IN_GGA(.(101, T35), 101, X59) → REDUCE7_IN_GGA(T35, 101, X59)
REDUCE7_IN_GGA(.(105, T35), 105, X59) → REDUCE7_IN_GGA(T35, 105, X59)
REDUCE7_IN_GGA(.(111, T35), 111, X59) → REDUCE7_IN_GGA(T35, 111, X59)
REDUCE7_IN_GGA(.(117, T35), 117, X59) → REDUCE7_IN_GGA(T35, 117, X59)
REDUCE7_IN_GGA(.(104, T35), 104, X59) → REDUCE7_IN_GGA(T35, 104, X59)
REDUCE7_IN_GGA(.(119, T35), 119, X59) → REDUCE7_IN_GGA(T35, 119, X59)
REDUCE7_IN_GGA(.(121, T35), 121, X59) → REDUCE7_IN_GGA(T35, 121, X59)

R is empty.
The argument filtering Pi contains the following mapping:
.(x1, x2)  =  .(x1, x2)
97  =  97
101  =  101
105  =  105
111  =  111
117  =  117
104  =  104
119  =  119
121  =  121
REDUCE7_IN_GGA(x1, x2, x3)  =  REDUCE7_IN_GGA(x1, x2)

We have to consider all (P,R,Pi)-chains

(18) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(19) Obligation:

Q DP problem:
The TRS P consists of the following rules:

REDUCE7_IN_GGA(.(T52, T53), T52) → REDUCE7_IN_GGA(T53, T52)
REDUCE7_IN_GGA(.(97, T35), 97) → REDUCE7_IN_GGA(T35, 97)
REDUCE7_IN_GGA(.(101, T35), 101) → REDUCE7_IN_GGA(T35, 101)
REDUCE7_IN_GGA(.(105, T35), 105) → REDUCE7_IN_GGA(T35, 105)
REDUCE7_IN_GGA(.(111, T35), 111) → REDUCE7_IN_GGA(T35, 111)
REDUCE7_IN_GGA(.(117, T35), 117) → REDUCE7_IN_GGA(T35, 117)
REDUCE7_IN_GGA(.(104, T35), 104) → REDUCE7_IN_GGA(T35, 104)
REDUCE7_IN_GGA(.(119, T35), 119) → REDUCE7_IN_GGA(T35, 119)
REDUCE7_IN_GGA(.(121, T35), 121) → REDUCE7_IN_GGA(T35, 121)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(20) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • REDUCE7_IN_GGA(.(T52, T53), T52) → REDUCE7_IN_GGA(T53, T52)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(97, T35), 97) → REDUCE7_IN_GGA(T35, 97)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(101, T35), 101) → REDUCE7_IN_GGA(T35, 101)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(105, T35), 105) → REDUCE7_IN_GGA(T35, 105)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(111, T35), 111) → REDUCE7_IN_GGA(T35, 111)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(117, T35), 117) → REDUCE7_IN_GGA(T35, 117)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(104, T35), 104) → REDUCE7_IN_GGA(T35, 104)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(119, T35), 119) → REDUCE7_IN_GGA(T35, 119)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

  • REDUCE7_IN_GGA(.(121, T35), 121) → REDUCE7_IN_GGA(T35, 121)
    The graph contains the following edges 1 > 1, 1 > 2, 2 >= 2

(21) YES