(0) Obligation:

Clauses:

p(X, Y) :- ','(q(X, Y), r(X)).
q(a, 0).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).

Queries:

p(g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

q4(a, 0).
q4(T5, s(T6)) :- q4(T5, T6).
r15 :- r15.
p1(T3, T4) :- q4(T3, T4).
p1(b, T4) :- ','(q4(b, T4), r15).

Queries:

p1(g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,b)
q4_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(T3, T4) → U3_GG(T3, T4, q4_in_gg(T3, T4))
P1_IN_GG(T3, T4) → Q4_IN_GG(T3, T4)
Q4_IN_GG(T5, s(T6)) → U1_GG(T5, T6, q4_in_gg(T5, T6))
Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
P1_IN_GG(b, T4) → U4_GG(T4, q4_in_gg(b, T4))
P1_IN_GG(b, T4) → Q4_IN_GG(b, T4)
U4_GG(T4, q4_out_gg(b, T4)) → U5_GG(T4, r15_in_)
U4_GG(T4, q4_out_gg(b, T4)) → R15_IN_
R15_IN_U2_1(r15_in_)
R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x3)
Q4_IN_GG(x1, x2)  =  Q4_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2)  =  U5_GG(x2)
R15_IN_  =  R15_IN_
U2_1(x1)  =  U2_1(x1)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(T3, T4) → U3_GG(T3, T4, q4_in_gg(T3, T4))
P1_IN_GG(T3, T4) → Q4_IN_GG(T3, T4)
Q4_IN_GG(T5, s(T6)) → U1_GG(T5, T6, q4_in_gg(T5, T6))
Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
P1_IN_GG(b, T4) → U4_GG(T4, q4_in_gg(b, T4))
P1_IN_GG(b, T4) → Q4_IN_GG(b, T4)
U4_GG(T4, q4_out_gg(b, T4)) → U5_GG(T4, r15_in_)
U4_GG(T4, q4_out_gg(b, T4)) → R15_IN_
R15_IN_U2_1(r15_in_)
R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U3_GG(x1, x2, x3)  =  U3_GG(x3)
Q4_IN_GG(x1, x2)  =  Q4_IN_GG(x1, x2)
U1_GG(x1, x2, x3)  =  U1_GG(x3)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2)  =  U5_GG(x2)
R15_IN_  =  R15_IN_
U2_1(x1)  =  U2_1(x1)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_
R15_IN_  =  R15_IN_

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = R15_IN_ evaluates to t =R15_IN_

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from R15_IN_ to R15_IN_.



(15) FALSE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
U3_gg(x1, x2, x3)  =  U3_gg(x3)
q4_in_gg(x1, x2)  =  q4_in_gg(x1, x2)
a  =  a
0  =  0
q4_out_gg(x1, x2)  =  q4_out_gg
s(x1)  =  s(x1)
U1_gg(x1, x2, x3)  =  U1_gg(x3)
p1_out_gg(x1, x2)  =  p1_out_gg
b  =  b
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
r15_in_  =  r15_in_
U2_(x1)  =  U2_(x1)
r15_out_  =  r15_out_
Q4_IN_GG(x1, x2)  =  Q4_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
    The graph contains the following edges 1 >= 1, 2 > 2

(22) TRUE

(23) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,b)
q4_in: (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(24) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.

(25) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(T3, T4) → U3_GG(T3, T4, q4_in_gg(T3, T4))
P1_IN_GG(T3, T4) → Q4_IN_GG(T3, T4)
Q4_IN_GG(T5, s(T6)) → U1_GG(T5, T6, q4_in_gg(T5, T6))
Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
P1_IN_GG(b, T4) → U4_GG(T4, q4_in_gg(b, T4))
P1_IN_GG(b, T4) → Q4_IN_GG(b, T4)
U4_GG(T4, q4_out_gg(b, T4)) → U5_GG(T4, r15_in_)
U4_GG(T4, q4_out_gg(b, T4)) → R15_IN_
R15_IN_U2_1(r15_in_)
R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(26) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(T3, T4) → U3_GG(T3, T4, q4_in_gg(T3, T4))
P1_IN_GG(T3, T4) → Q4_IN_GG(T3, T4)
Q4_IN_GG(T5, s(T6)) → U1_GG(T5, T6, q4_in_gg(T5, T6))
Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
P1_IN_GG(b, T4) → U4_GG(T4, q4_in_gg(b, T4))
P1_IN_GG(b, T4) → Q4_IN_GG(b, T4)
U4_GG(T4, q4_out_gg(b, T4)) → U5_GG(T4, r15_in_)
U4_GG(T4, q4_out_gg(b, T4)) → R15_IN_
R15_IN_U2_1(r15_in_)
R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(27) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 8 less nodes.

(28) Complex Obligation (AND)

(29) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(30) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(31) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(32) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

R15_IN_R15_IN_

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(34) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.

s = R15_IN_ evaluates to t =R15_IN_

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Semiunifier: [ ]
  • Matcher: [ ]




Rewriting sequence

The DP semiunifies directly so there is only one rewrite step from R15_IN_ to R15_IN_.



(35) FALSE

(36) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

The TRS R consists of the following rules:

p1_in_gg(T3, T4) → U3_gg(T3, T4, q4_in_gg(T3, T4))
q4_in_gg(a, 0) → q4_out_gg(a, 0)
q4_in_gg(T5, s(T6)) → U1_gg(T5, T6, q4_in_gg(T5, T6))
U1_gg(T5, T6, q4_out_gg(T5, T6)) → q4_out_gg(T5, s(T6))
U3_gg(T3, T4, q4_out_gg(T3, T4)) → p1_out_gg(T3, T4)
p1_in_gg(b, T4) → U4_gg(T4, q4_in_gg(b, T4))
U4_gg(T4, q4_out_gg(b, T4)) → U5_gg(T4, r15_in_)
r15_in_U2_(r15_in_)
U2_(r15_out_) → r15_out_
U5_gg(T4, r15_out_) → p1_out_gg(b, T4)

Pi is empty.
We have to consider all (P,R,Pi)-chains

(37) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(38) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(39) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(40) Obligation:

Q DP problem:
The TRS P consists of the following rules:

Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(41) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • Q4_IN_GG(T5, s(T6)) → Q4_IN_GG(T5, T6)
    The graph contains the following edges 1 >= 1, 2 > 2

(42) TRUE