(0) Obligation:
Clauses:
p(X, Y) :- ','(q(X, Y), r(X)).
q(a, 0).
q(X, s(Y)) :- q(X, Y).
r(b) :- r(b).
Queries:
p(g,g).
(1) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,b)
q_in: (b,b)
r_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(2) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
(3) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GG(X, Y) → U1_GG(X, Y, q_in_gg(X, Y))
P_IN_GG(X, Y) → Q_IN_GG(X, Y)
Q_IN_GG(X, s(Y)) → U3_GG(X, Y, q_in_gg(X, Y))
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
U1_GG(X, Y, q_out_gg(X, Y)) → U2_GG(X, Y, r_in_g(X))
U1_GG(X, Y, q_out_gg(X, Y)) → R_IN_G(X)
R_IN_G(b) → U4_G(r_in_g(b))
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
Q_IN_GG(
x1,
x2) =
Q_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
R_IN_G(
x1) =
R_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
We have to consider all (P,R,Pi)-chains
(4) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GG(X, Y) → U1_GG(X, Y, q_in_gg(X, Y))
P_IN_GG(X, Y) → Q_IN_GG(X, Y)
Q_IN_GG(X, s(Y)) → U3_GG(X, Y, q_in_gg(X, Y))
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
U1_GG(X, Y, q_out_gg(X, Y)) → U2_GG(X, Y, r_in_g(X))
U1_GG(X, Y, q_out_gg(X, Y)) → R_IN_G(X)
R_IN_G(b) → U4_G(r_in_g(b))
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
P_IN_GG(
x1,
x2) =
P_IN_GG(
x1,
x2)
U1_GG(
x1,
x2,
x3) =
U1_GG(
x1,
x3)
Q_IN_GG(
x1,
x2) =
Q_IN_GG(
x1,
x2)
U3_GG(
x1,
x2,
x3) =
U3_GG(
x3)
U2_GG(
x1,
x2,
x3) =
U2_GG(
x3)
R_IN_G(
x1) =
R_IN_G(
x1)
U4_G(
x1) =
U4_G(
x1)
We have to consider all (P,R,Pi)-chains
(5) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(6) Complex Obligation (AND)
(7) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
R_IN_G(
x1) =
R_IN_G(
x1)
We have to consider all (P,R,Pi)-chains
(8) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(9) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(10) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(11) Obligation:
Q DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(12) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
R_IN_G(
b) evaluates to t =
R_IN_G(
b)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from R_IN_G(b) to R_IN_G(b).
(13) FALSE
(14) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
The argument filtering Pi contains the following mapping:
p_in_gg(
x1,
x2) =
p_in_gg(
x1,
x2)
U1_gg(
x1,
x2,
x3) =
U1_gg(
x1,
x3)
q_in_gg(
x1,
x2) =
q_in_gg(
x1,
x2)
a =
a
0 =
0
q_out_gg(
x1,
x2) =
q_out_gg
s(
x1) =
s(
x1)
U3_gg(
x1,
x2,
x3) =
U3_gg(
x3)
U2_gg(
x1,
x2,
x3) =
U2_gg(
x3)
r_in_g(
x1) =
r_in_g(
x1)
b =
b
U4_g(
x1) =
U4_g(
x1)
r_out_g(
x1) =
r_out_g
p_out_gg(
x1,
x2) =
p_out_gg
Q_IN_GG(
x1,
x2) =
Q_IN_GG(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(15) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(16) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(17) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(19) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
The graph contains the following edges 1 >= 1, 2 > 2
(20) TRUE
(21) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p_in: (b,b)
q_in: (b,b)
r_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(22) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
(23) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GG(X, Y) → U1_GG(X, Y, q_in_gg(X, Y))
P_IN_GG(X, Y) → Q_IN_GG(X, Y)
Q_IN_GG(X, s(Y)) → U3_GG(X, Y, q_in_gg(X, Y))
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
U1_GG(X, Y, q_out_gg(X, Y)) → U2_GG(X, Y, r_in_g(X))
U1_GG(X, Y, q_out_gg(X, Y)) → R_IN_G(X)
R_IN_G(b) → U4_G(r_in_g(b))
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(24) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P_IN_GG(X, Y) → U1_GG(X, Y, q_in_gg(X, Y))
P_IN_GG(X, Y) → Q_IN_GG(X, Y)
Q_IN_GG(X, s(Y)) → U3_GG(X, Y, q_in_gg(X, Y))
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
U1_GG(X, Y, q_out_gg(X, Y)) → U2_GG(X, Y, r_in_g(X))
U1_GG(X, Y, q_out_gg(X, Y)) → R_IN_G(X)
R_IN_G(b) → U4_G(r_in_g(b))
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(25) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 6 less nodes.
(26) Complex Obligation (AND)
(27) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(28) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(29) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(30) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(31) Obligation:
Q DP problem:
The TRS P consists of the following rules:
R_IN_G(b) → R_IN_G(b)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(32) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
R_IN_G(
b) evaluates to t =
R_IN_G(
b)
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from R_IN_G(b) to R_IN_G(b).
(33) FALSE
(34) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
The TRS R consists of the following rules:
p_in_gg(X, Y) → U1_gg(X, Y, q_in_gg(X, Y))
q_in_gg(a, 0) → q_out_gg(a, 0)
q_in_gg(X, s(Y)) → U3_gg(X, Y, q_in_gg(X, Y))
U3_gg(X, Y, q_out_gg(X, Y)) → q_out_gg(X, s(Y))
U1_gg(X, Y, q_out_gg(X, Y)) → U2_gg(X, Y, r_in_g(X))
r_in_g(b) → U4_g(r_in_g(b))
U4_g(r_out_g(b)) → r_out_g(b)
U2_gg(X, Y, r_out_g(X)) → p_out_gg(X, Y)
Pi is empty.
We have to consider all (P,R,Pi)-chains
(35) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(36) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains
(37) PiDPToQDPProof (EQUIVALENT transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(38) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(39) QDPSizeChangeProof (EQUIVALENT transformation)
By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.
From the DPs we obtained the following set of size-change graphs:
- Q_IN_GG(X, s(Y)) → Q_IN_GG(X, Y)
The graph contains the following edges 1 >= 1, 2 > 2
(40) TRUE