(0) Obligation:

Clauses:

p(X, Y) :- ','(less(X, Y), ','(!, p(s(X), Y))).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

p(g,g).

(1) PrologToDTProblemTransformerProof (SOUND transformation)

Built DT problem from termination graph.

(2) Obligation:

Triples:

less29(s(T43)) :- less14(T43).
less41(s(T60)) :- less29(T60).
less53(s(T76)) :- less41(T76).
less65(s(T92)) :- less53(T92).
less77(s(T108)) :- less65(T108).
less98(s(T149), s(T150)) :- less98(T149, T150).
p85(s(T126), T116) :- less77(T126).
p85(T114, T116) :- ','(lessc86(T114), p1(s(T116), s(T114))).
p1(0, s(T21)) :- less14(T21).
p1(0, s(T39)) :- ','(lessc10(T39), less29(T39)).
p1(0, s(T56)) :- ','(lessc10(T56), ','(lessc25(T56), less41(T56))).
p1(0, s(T72)) :- ','(lessc10(T72), ','(lessc25(T72), ','(lessc37(T72), less53(T72)))).
p1(0, s(T88)) :- ','(lessc10(T88), ','(lessc25(T88), ','(lessc37(T88), ','(lessc49(T88), less65(T88))))).
p1(0, s(T104)) :- ','(lessc10(T104), ','(lessc25(T104), ','(lessc37(T104), ','(lessc49(T104), ','(lessc61(T104), less77(T104)))))).
p1(0, s(T114)) :- ','(lessc10(T114), ','(lessc25(T114), ','(lessc37(T114), ','(lessc49(T114), ','(lessc61(T114), ','(lessc73(T114), p85(T114, s(s(s(s(s(s(s(0)))))))))))))).
p1(s(T134), s(T135)) :- less98(T134, T135).
p1(s(T134), s(T135)) :- ','(lessc98(T134, T135), p1(s(s(T134)), s(T135))).

Clauses:

lessc14(s(T28)).
lessc29(s(T43)) :- lessc14(T43).
lessc41(s(T60)) :- lessc29(T60).
lessc53(s(T76)) :- lessc41(T76).
lessc65(s(T92)) :- lessc53(T92).
lessc77(s(T108)) :- lessc65(T108).
pc1(0, s(T114)) :- ','(lessc10(T114), ','(lessc25(T114), ','(lessc37(T114), ','(lessc49(T114), ','(lessc61(T114), ','(lessc73(T114), qc85(T114, s(s(s(s(s(s(s(0)))))))))))))).
pc1(s(T134), s(T135)) :- ','(lessc98(T134, T135), pc1(s(s(T134)), s(T135))).
lessc98(0, s(T144)).
lessc98(s(T149), s(T150)) :- lessc98(T149, T150).
qc85(T114, T116) :- ','(lessc86(T114), pc1(s(T116), s(T114))).
lessc10(T21) :- lessc14(T21).
lessc25(T39) :- lessc29(T39).
lessc37(T56) :- lessc41(T56).
lessc49(T72) :- lessc53(T72).
lessc61(T88) :- lessc65(T88).
lessc73(T104) :- lessc77(T104).
lessc86(s(T126)) :- lessc77(T126).

Afs:

p1(x1, x2)  =  p1(x1, x2)

(3) UndefinedPredicateInTriplesTransformerProof (SOUND transformation)

Deleted triples and predicates having undefined goals [UNKNOWN].

(4) Obligation:

Triples:

less98(s(T149), s(T150)) :- less98(T149, T150).
p85(T114, T116) :- ','(lessc86(T114), p1(s(T116), s(T114))).
p1(0, s(T114)) :- ','(lessc10(T114), ','(lessc25(T114), ','(lessc37(T114), ','(lessc49(T114), ','(lessc61(T114), ','(lessc73(T114), p85(T114, s(s(s(s(s(s(s(0)))))))))))))).
p1(s(T134), s(T135)) :- less98(T134, T135).
p1(s(T134), s(T135)) :- ','(lessc98(T134, T135), p1(s(s(T134)), s(T135))).

Clauses:

lessc14(s(T28)).
lessc29(s(T43)) :- lessc14(T43).
lessc41(s(T60)) :- lessc29(T60).
lessc53(s(T76)) :- lessc41(T76).
lessc65(s(T92)) :- lessc53(T92).
lessc77(s(T108)) :- lessc65(T108).
pc1(0, s(T114)) :- ','(lessc10(T114), ','(lessc25(T114), ','(lessc37(T114), ','(lessc49(T114), ','(lessc61(T114), ','(lessc73(T114), qc85(T114, s(s(s(s(s(s(s(0)))))))))))))).
pc1(s(T134), s(T135)) :- ','(lessc98(T134, T135), pc1(s(s(T134)), s(T135))).
lessc98(0, s(T144)).
lessc98(s(T149), s(T150)) :- lessc98(T149, T150).
qc85(T114, T116) :- ','(lessc86(T114), pc1(s(T116), s(T114))).
lessc10(T21) :- lessc14(T21).
lessc25(T39) :- lessc29(T39).
lessc37(T56) :- lessc41(T56).
lessc49(T72) :- lessc53(T72).
lessc61(T88) :- lessc65(T88).
lessc73(T104) :- lessc77(T104).
lessc86(s(T126)) :- lessc77(T126).

Afs:

p1(x1, x2)  =  p1(x1, x2)

(5) TriplesToPiDPProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,b)
lessc10_in: (b)
lessc25_in: (b)
lessc29_in: (b)
lessc37_in: (b)
lessc41_in: (b)
lessc49_in: (b)
lessc53_in: (b)
lessc61_in: (b)
lessc65_in: (b)
lessc73_in: (b)
lessc77_in: (b)
p85_in: (b,b)
lessc86_in: (b)
less98_in: (b,b)
lessc98_in: (b,b)
Transforming TRIPLES into the following Term Rewriting System:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(T114)) → U4_GG(T114, lessc10_in_g(T114))
U4_GG(T114, lessc10_out_g(T114)) → U5_GG(T114, lessc25_in_g(T114))
U5_GG(T114, lessc25_out_g(T114)) → U6_GG(T114, lessc37_in_g(T114))
U6_GG(T114, lessc37_out_g(T114)) → U7_GG(T114, lessc49_in_g(T114))
U7_GG(T114, lessc49_out_g(T114)) → U8_GG(T114, lessc61_in_g(T114))
U8_GG(T114, lessc61_out_g(T114)) → U9_GG(T114, lessc73_in_g(T114))
U9_GG(T114, lessc73_out_g(T114)) → U10_GG(T114, p85_in_gg(T114, s(s(s(s(s(s(s(0)))))))))
U9_GG(T114, lessc73_out_g(T114)) → P85_IN_GG(T114, s(s(s(s(s(s(s(0))))))))
P85_IN_GG(T114, T116) → U2_GG(T114, T116, lessc86_in_g(T114))
U2_GG(T114, T116, lessc86_out_g(T114)) → U3_GG(T114, T116, p1_in_gg(s(T116), s(T114)))
U2_GG(T114, T116, lessc86_out_g(T114)) → P1_IN_GG(s(T116), s(T114))
P1_IN_GG(s(T134), s(T135)) → U11_GG(T134, T135, less98_in_gg(T134, T135))
P1_IN_GG(s(T134), s(T135)) → LESS98_IN_GG(T134, T135)
LESS98_IN_GG(s(T149), s(T150)) → U1_GG(T149, T150, less98_in_gg(T149, T150))
LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)
P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → U13_GG(T134, T135, p1_in_gg(s(s(T134)), s(T135)))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc10_in_g(T21) → U32_g(T21, lessc14_in_g(T21))
lessc14_in_g(s(T28)) → lessc14_out_g(s(T28))
U32_g(T21, lessc14_out_g(T21)) → lessc10_out_g(T21)
lessc25_in_g(T39) → U33_g(T39, lessc29_in_g(T39))
lessc29_in_g(s(T43)) → U15_g(T43, lessc14_in_g(T43))
U15_g(T43, lessc14_out_g(T43)) → lessc29_out_g(s(T43))
U33_g(T39, lessc29_out_g(T39)) → lessc25_out_g(T39)
lessc37_in_g(T56) → U34_g(T56, lessc41_in_g(T56))
lessc41_in_g(s(T60)) → U16_g(T60, lessc29_in_g(T60))
U16_g(T60, lessc29_out_g(T60)) → lessc41_out_g(s(T60))
U34_g(T56, lessc41_out_g(T56)) → lessc37_out_g(T56)
lessc49_in_g(T72) → U35_g(T72, lessc53_in_g(T72))
lessc53_in_g(s(T76)) → U17_g(T76, lessc41_in_g(T76))
U17_g(T76, lessc41_out_g(T76)) → lessc53_out_g(s(T76))
U35_g(T72, lessc53_out_g(T72)) → lessc49_out_g(T72)
lessc61_in_g(T88) → U36_g(T88, lessc65_in_g(T88))
lessc65_in_g(s(T92)) → U18_g(T92, lessc53_in_g(T92))
U18_g(T92, lessc53_out_g(T92)) → lessc65_out_g(s(T92))
U36_g(T88, lessc65_out_g(T88)) → lessc61_out_g(T88)
lessc73_in_g(T104) → U37_g(T104, lessc77_in_g(T104))
lessc77_in_g(s(T108)) → U19_g(T108, lessc65_in_g(T108))
U19_g(T108, lessc65_out_g(T108)) → lessc77_out_g(s(T108))
U37_g(T104, lessc77_out_g(T104)) → lessc73_out_g(T104)
lessc86_in_g(s(T126)) → U38_g(T126, lessc77_in_g(T126))
U38_g(T126, lessc77_out_g(T126)) → lessc86_out_g(s(T126))
lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

Pi is empty.
We have to consider all (P,R,Pi)-chains

Infinitary Constructor Rewriting Termination of PiDP implies Termination of TRIPLES

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(T114)) → U4_GG(T114, lessc10_in_g(T114))
U4_GG(T114, lessc10_out_g(T114)) → U5_GG(T114, lessc25_in_g(T114))
U5_GG(T114, lessc25_out_g(T114)) → U6_GG(T114, lessc37_in_g(T114))
U6_GG(T114, lessc37_out_g(T114)) → U7_GG(T114, lessc49_in_g(T114))
U7_GG(T114, lessc49_out_g(T114)) → U8_GG(T114, lessc61_in_g(T114))
U8_GG(T114, lessc61_out_g(T114)) → U9_GG(T114, lessc73_in_g(T114))
U9_GG(T114, lessc73_out_g(T114)) → U10_GG(T114, p85_in_gg(T114, s(s(s(s(s(s(s(0)))))))))
U9_GG(T114, lessc73_out_g(T114)) → P85_IN_GG(T114, s(s(s(s(s(s(s(0))))))))
P85_IN_GG(T114, T116) → U2_GG(T114, T116, lessc86_in_g(T114))
U2_GG(T114, T116, lessc86_out_g(T114)) → U3_GG(T114, T116, p1_in_gg(s(T116), s(T114)))
U2_GG(T114, T116, lessc86_out_g(T114)) → P1_IN_GG(s(T116), s(T114))
P1_IN_GG(s(T134), s(T135)) → U11_GG(T134, T135, less98_in_gg(T134, T135))
P1_IN_GG(s(T134), s(T135)) → LESS98_IN_GG(T134, T135)
LESS98_IN_GG(s(T149), s(T150)) → U1_GG(T149, T150, less98_in_gg(T149, T150))
LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)
P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → U13_GG(T134, T135, p1_in_gg(s(s(T134)), s(T135)))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc10_in_g(T21) → U32_g(T21, lessc14_in_g(T21))
lessc14_in_g(s(T28)) → lessc14_out_g(s(T28))
U32_g(T21, lessc14_out_g(T21)) → lessc10_out_g(T21)
lessc25_in_g(T39) → U33_g(T39, lessc29_in_g(T39))
lessc29_in_g(s(T43)) → U15_g(T43, lessc14_in_g(T43))
U15_g(T43, lessc14_out_g(T43)) → lessc29_out_g(s(T43))
U33_g(T39, lessc29_out_g(T39)) → lessc25_out_g(T39)
lessc37_in_g(T56) → U34_g(T56, lessc41_in_g(T56))
lessc41_in_g(s(T60)) → U16_g(T60, lessc29_in_g(T60))
U16_g(T60, lessc29_out_g(T60)) → lessc41_out_g(s(T60))
U34_g(T56, lessc41_out_g(T56)) → lessc37_out_g(T56)
lessc49_in_g(T72) → U35_g(T72, lessc53_in_g(T72))
lessc53_in_g(s(T76)) → U17_g(T76, lessc41_in_g(T76))
U17_g(T76, lessc41_out_g(T76)) → lessc53_out_g(s(T76))
U35_g(T72, lessc53_out_g(T72)) → lessc49_out_g(T72)
lessc61_in_g(T88) → U36_g(T88, lessc65_in_g(T88))
lessc65_in_g(s(T92)) → U18_g(T92, lessc53_in_g(T92))
U18_g(T92, lessc53_out_g(T92)) → lessc65_out_g(s(T92))
U36_g(T88, lessc65_out_g(T88)) → lessc61_out_g(T88)
lessc73_in_g(T104) → U37_g(T104, lessc77_in_g(T104))
lessc77_in_g(s(T108)) → U19_g(T108, lessc65_in_g(T108))
U19_g(T108, lessc65_out_g(T108)) → lessc77_out_g(s(T108))
U37_g(T104, lessc77_out_g(T104)) → lessc73_out_g(T104)
lessc86_in_g(s(T126)) → U38_g(T126, lessc77_in_g(T126))
U38_g(T126, lessc77_out_g(T126)) → lessc86_out_g(s(T126))
lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 2 SCCs with 15 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)

The TRS R consists of the following rules:

lessc10_in_g(T21) → U32_g(T21, lessc14_in_g(T21))
lessc14_in_g(s(T28)) → lessc14_out_g(s(T28))
U32_g(T21, lessc14_out_g(T21)) → lessc10_out_g(T21)
lessc25_in_g(T39) → U33_g(T39, lessc29_in_g(T39))
lessc29_in_g(s(T43)) → U15_g(T43, lessc14_in_g(T43))
U15_g(T43, lessc14_out_g(T43)) → lessc29_out_g(s(T43))
U33_g(T39, lessc29_out_g(T39)) → lessc25_out_g(T39)
lessc37_in_g(T56) → U34_g(T56, lessc41_in_g(T56))
lessc41_in_g(s(T60)) → U16_g(T60, lessc29_in_g(T60))
U16_g(T60, lessc29_out_g(T60)) → lessc41_out_g(s(T60))
U34_g(T56, lessc41_out_g(T56)) → lessc37_out_g(T56)
lessc49_in_g(T72) → U35_g(T72, lessc53_in_g(T72))
lessc53_in_g(s(T76)) → U17_g(T76, lessc41_in_g(T76))
U17_g(T76, lessc41_out_g(T76)) → lessc53_out_g(s(T76))
U35_g(T72, lessc53_out_g(T72)) → lessc49_out_g(T72)
lessc61_in_g(T88) → U36_g(T88, lessc65_in_g(T88))
lessc65_in_g(s(T92)) → U18_g(T92, lessc53_in_g(T92))
U18_g(T92, lessc53_out_g(T92)) → lessc65_out_g(s(T92))
U36_g(T88, lessc65_out_g(T88)) → lessc61_out_g(T88)
lessc73_in_g(T104) → U37_g(T104, lessc77_in_g(T104))
lessc77_in_g(s(T108)) → U19_g(T108, lessc65_in_g(T108))
U19_g(T108, lessc65_out_g(T108)) → lessc77_out_g(s(T108))
U37_g(T104, lessc77_out_g(T104)) → lessc73_out_g(T104)
lessc86_in_g(s(T126)) → U38_g(T126, lessc77_in_g(T126))
U38_g(T126, lessc77_out_g(T126)) → lessc86_out_g(s(T126))
lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS98_IN_GG(s(T149), s(T150)) → LESS98_IN_GG(T149, T150)
    The graph contains the following edges 1 > 1, 2 > 2

(15) YES

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc10_in_g(T21) → U32_g(T21, lessc14_in_g(T21))
lessc14_in_g(s(T28)) → lessc14_out_g(s(T28))
U32_g(T21, lessc14_out_g(T21)) → lessc10_out_g(T21)
lessc25_in_g(T39) → U33_g(T39, lessc29_in_g(T39))
lessc29_in_g(s(T43)) → U15_g(T43, lessc14_in_g(T43))
U15_g(T43, lessc14_out_g(T43)) → lessc29_out_g(s(T43))
U33_g(T39, lessc29_out_g(T39)) → lessc25_out_g(T39)
lessc37_in_g(T56) → U34_g(T56, lessc41_in_g(T56))
lessc41_in_g(s(T60)) → U16_g(T60, lessc29_in_g(T60))
U16_g(T60, lessc29_out_g(T60)) → lessc41_out_g(s(T60))
U34_g(T56, lessc41_out_g(T56)) → lessc37_out_g(T56)
lessc49_in_g(T72) → U35_g(T72, lessc53_in_g(T72))
lessc53_in_g(s(T76)) → U17_g(T76, lessc41_in_g(T76))
U17_g(T76, lessc41_out_g(T76)) → lessc53_out_g(s(T76))
U35_g(T72, lessc53_out_g(T72)) → lessc49_out_g(T72)
lessc61_in_g(T88) → U36_g(T88, lessc65_in_g(T88))
lessc65_in_g(s(T92)) → U18_g(T92, lessc53_in_g(T92))
U18_g(T92, lessc53_out_g(T92)) → lessc65_out_g(s(T92))
U36_g(T88, lessc65_out_g(T88)) → lessc61_out_g(T88)
lessc73_in_g(T104) → U37_g(T104, lessc77_in_g(T104))
lessc77_in_g(s(T108)) → U19_g(T108, lessc65_in_g(T108))
U19_g(T108, lessc65_out_g(T108)) → lessc77_out_g(s(T108))
U37_g(T104, lessc77_out_g(T104)) → lessc73_out_g(T104)
lessc86_in_g(s(T126)) → U38_g(T126, lessc77_in_g(T126))
U38_g(T126, lessc77_out_g(T126)) → lessc86_out_g(s(T126))
lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

Pi is empty.
We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(21) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P1_IN_GG(s(T134), s(T135)) → U12_GG(T134, T135, lessc98_in_gg(T134, T135)) at position [2] we obtained the following new rules [LPAR04]:

P1_IN_GG(s(0), s(s(x0))) → U12_GG(0, s(x0), lessc98_out_gg(0, s(x0)))
P1_IN_GG(s(s(x0)), s(s(x1))) → U12_GG(s(x0), s(x1), U29_gg(x0, x1, lessc98_in_gg(x0, x1)))

(22) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))
P1_IN_GG(s(0), s(s(x0))) → U12_GG(0, s(x0), lessc98_out_gg(0, s(x0)))
P1_IN_GG(s(s(x0)), s(s(x1))) → U12_GG(s(x0), s(x1), U29_gg(x0, x1, lessc98_in_gg(x0, x1)))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(23) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.

(24) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(s(x0)), s(s(x1))) → U12_GG(s(x0), s(x1), U29_gg(x0, x1, lessc98_in_gg(x0, x1)))
U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(25) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U12_GG(T134, T135, lessc98_out_gg(T134, T135)) → P1_IN_GG(s(s(T134)), s(T135)) we obtained the following new rules [LPAR04]:

U12_GG(s(z0), s(z1), lessc98_out_gg(s(z0), s(z1))) → P1_IN_GG(s(s(s(z0))), s(s(z1)))

(26) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(s(x0)), s(s(x1))) → U12_GG(s(x0), s(x1), U29_gg(x0, x1, lessc98_in_gg(x0, x1)))
U12_GG(s(z0), s(z1), lessc98_out_gg(s(z0), s(z1))) → P1_IN_GG(s(s(s(z0))), s(s(z1)))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(27) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_GG(s(s(x0)), s(s(x1))) → U12_GG(s(x0), s(x1), U29_gg(x0, x1, lessc98_in_gg(x0, x1))) we obtained the following new rules [LPAR04]:

P1_IN_GG(s(s(s(z0))), s(s(z1))) → U12_GG(s(s(z0)), s(z1), U29_gg(s(z0), z1, lessc98_in_gg(s(z0), z1)))

(28) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U12_GG(s(z0), s(z1), lessc98_out_gg(s(z0), s(z1))) → P1_IN_GG(s(s(s(z0))), s(s(z1)))
P1_IN_GG(s(s(s(z0))), s(s(z1))) → U12_GG(s(s(z0)), s(z1), U29_gg(s(z0), z1, lessc98_in_gg(s(z0), z1)))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(29) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U12_GG(s(z0), s(z1), lessc98_out_gg(s(z0), s(z1))) → P1_IN_GG(s(s(s(z0))), s(s(z1))) we obtained the following new rules [LPAR04]:

U12_GG(s(s(z0)), s(z1), lessc98_out_gg(s(s(z0)), s(z1))) → P1_IN_GG(s(s(s(s(z0)))), s(s(z1)))

(30) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_GG(s(s(s(z0))), s(s(z1))) → U12_GG(s(s(z0)), s(z1), U29_gg(s(z0), z1, lessc98_in_gg(s(z0), z1)))
U12_GG(s(s(z0)), s(z1), lessc98_out_gg(s(s(z0)), s(z1))) → P1_IN_GG(s(s(s(s(z0)))), s(s(z1)))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.

(31) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_GG(s(s(s(z0))), s(s(z1))) → U12_GG(s(s(z0)), s(z1), U29_gg(s(z0), z1, lessc98_in_gg(s(z0), z1))) we obtained the following new rules [LPAR04]:

P1_IN_GG(s(s(s(s(z0)))), s(s(z1))) → U12_GG(s(s(s(z0))), s(z1), U29_gg(s(s(z0)), z1, lessc98_in_gg(s(s(z0)), z1)))

(32) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U12_GG(s(s(z0)), s(z1), lessc98_out_gg(s(s(z0)), s(z1))) → P1_IN_GG(s(s(s(s(z0)))), s(s(z1)))
P1_IN_GG(s(s(s(s(z0)))), s(s(z1))) → U12_GG(s(s(s(z0))), s(z1), U29_gg(s(s(z0)), z1, lessc98_in_gg(s(s(z0)), z1)))

The TRS R consists of the following rules:

lessc98_in_gg(0, s(T144)) → lessc98_out_gg(0, s(T144))
lessc98_in_gg(s(T149), s(T150)) → U29_gg(T149, T150, lessc98_in_gg(T149, T150))
U29_gg(T149, T150, lessc98_out_gg(T149, T150)) → lessc98_out_gg(s(T149), s(T150))

The set Q consists of the following terms:

lessc98_in_gg(x0, x1)
U29_gg(x0, x1, x2)

We have to consider all (P,Q,R)-chains.