(0) Obligation:

Clauses:

p(X, Y) :- ','(less(X, Y), ','(!, p(s(X), Y))).
less(0, s(X1)).
less(s(X), s(Y)) :- less(X, Y).

Queries:

p(g,g).

(1) PrologToPrologProblemTransformerProof (SOUND transformation)

Built Prolog problem from termination graph.

(2) Obligation:

Clauses:

p1(0, s(s(s(s(s(s(T31))))))) :- less86(T31).
p1(0, s(s(s(s(s(s(T31))))))) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
p1(s(0), s(s(T42))) :- p16(T42).
p1(s(s(0)), s(s(s(T45)))) :- p28(T45).
p1(s(s(s(0))), s(s(s(s(T48))))) :- p43(T48).
p1(s(s(s(s(0)))), s(s(s(s(s(T51)))))) :- p61(T51).
p1(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) :- p82(T54).
p1(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) :- less152(T55, T56).
p1(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) :- ','(less152(T55, T56), p1(s(T57), s(s(s(s(s(s(T56)))))))).
p16(s(s(s(s(T31))))) :- less86(T31).
p16(s(s(s(s(T31))))) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
p28(s(s(s(T31)))) :- less86(T31).
p28(s(s(s(T31)))) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
p43(s(s(T31))) :- less86(T31).
p43(s(s(T31))) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
p61(s(T31)) :- less86(T31).
p61(s(T31)) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
p82(T31) :- less86(T31).
p82(T31) :- ','(less86(T31), p1(s(T32), s(s(s(s(s(s(T31)))))))).
less152(0, s(T58)).
less152(s(T59), s(T60)) :- less152(T59, T60).
less86(s(T39)).

Queries:

p1(g,g).

(3) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,b) (f,b)
p16_in: (b)
p28_in: (b)
p43_in: (b)
p61_in: (b)
p82_in: (b)
less152_in: (f,b) (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(4) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)

(5) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → U1_GG(T31, less86_in_g(T31))
P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_GG(T31, less86_out_g(T31)) → U2_GG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_GG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → U1_AG(T31, less86_in_g(T31))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_AG(T31, less86_out_g(T31)) → U2_AG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_AG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(0), s(s(T42))) → U3_AG(T42, p16_in_g(T42))
P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
P16_IN_G(s(s(s(s(T31))))) → LESS86_IN_G(T31)
U10_G(T31, less86_out_g(T31)) → U11_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → U4_AG(T45, p28_in_g(T45))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
P28_IN_G(s(s(s(T31)))) → LESS86_IN_G(T31)
U12_G(T31, less86_out_g(T31)) → U13_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → U5_AG(T48, p43_in_g(T48))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
P43_IN_G(s(s(T31))) → LESS86_IN_G(T31)
U14_G(T31, less86_out_g(T31)) → U15_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_AG(T51, p61_in_g(T51))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
P61_IN_G(s(T31)) → LESS86_IN_G(T31)
U16_G(T31, less86_out_g(T31)) → U17_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_AG(T54, p82_in_g(T54))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
P82_IN_G(T31) → LESS86_IN_G(T31)
U18_G(T31, less86_out_g(T31)) → U19_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_AG(T55, T56)
LESS152_IN_AG(s(T59), s(T60)) → U20_AG(T59, T60, less152_in_ag(T59, T60))
LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)
U8_AG(T55, T56, less152_out_ag(T55, T56)) → U9_AG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))
P1_IN_GG(s(0), s(s(T42))) → U3_GG(T42, p16_in_g(T42))
P1_IN_GG(s(0), s(s(T42))) → P16_IN_G(T42)
P1_IN_GG(s(s(0)), s(s(s(T45)))) → U4_GG(T45, p28_in_g(T45))
P1_IN_GG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → U5_GG(T48, p43_in_g(T48))
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_GG(T51, p61_in_g(T51))
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_GG(T54, p82_in_g(T54))
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_GG(T55, T56, less152_in_gg(T55, T56))
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_GG(T55, T56)
LESS152_IN_GG(s(T59), s(T60)) → U20_GG(T59, T60, less152_in_gg(T59, T60))
LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
U8_GG(T55, T56, less152_out_gg(T55, T56)) → U9_GG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_GG(T55, T56, less152_out_gg(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U1_GG(x1, x2)  =  U1_GG(x1, x2)
LESS86_IN_G(x1)  =  LESS86_IN_G(x1)
U2_GG(x1, x2)  =  U2_GG(x2)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
U1_AG(x1, x2)  =  U1_AG(x1, x2)
U2_AG(x1, x2)  =  U2_AG(x2)
U3_AG(x1, x2)  =  U3_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x2)
U4_AG(x1, x2)  =  U4_AG(x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
U13_G(x1, x2)  =  U13_G(x2)
U5_AG(x1, x2)  =  U5_AG(x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x2)
U6_AG(x1, x2)  =  U6_AG(x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
U17_G(x1, x2)  =  U17_G(x2)
U7_AG(x1, x2)  =  U7_AG(x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U19_G(x1, x2)  =  U19_G(x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)
U20_AG(x1, x2, x3)  =  U20_AG(x3)
U9_AG(x1, x2, x3)  =  U9_AG(x1, x3)
U3_GG(x1, x2)  =  U3_GG(x2)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2)  =  U5_GG(x2)
U6_GG(x1, x2)  =  U6_GG(x2)
U7_GG(x1, x2)  =  U7_GG(x2)
U8_GG(x1, x2, x3)  =  U8_GG(x2, x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)
U20_GG(x1, x2, x3)  =  U20_GG(x3)
U9_GG(x1, x2, x3)  =  U9_GG(x3)

We have to consider all (P,R,Pi)-chains

(6) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → U1_GG(T31, less86_in_g(T31))
P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_GG(T31, less86_out_g(T31)) → U2_GG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_GG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → U1_AG(T31, less86_in_g(T31))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_AG(T31, less86_out_g(T31)) → U2_AG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_AG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(0), s(s(T42))) → U3_AG(T42, p16_in_g(T42))
P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
P16_IN_G(s(s(s(s(T31))))) → LESS86_IN_G(T31)
U10_G(T31, less86_out_g(T31)) → U11_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → U4_AG(T45, p28_in_g(T45))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
P28_IN_G(s(s(s(T31)))) → LESS86_IN_G(T31)
U12_G(T31, less86_out_g(T31)) → U13_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → U5_AG(T48, p43_in_g(T48))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
P43_IN_G(s(s(T31))) → LESS86_IN_G(T31)
U14_G(T31, less86_out_g(T31)) → U15_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_AG(T51, p61_in_g(T51))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
P61_IN_G(s(T31)) → LESS86_IN_G(T31)
U16_G(T31, less86_out_g(T31)) → U17_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_AG(T54, p82_in_g(T54))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
P82_IN_G(T31) → LESS86_IN_G(T31)
U18_G(T31, less86_out_g(T31)) → U19_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_AG(T55, T56)
LESS152_IN_AG(s(T59), s(T60)) → U20_AG(T59, T60, less152_in_ag(T59, T60))
LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)
U8_AG(T55, T56, less152_out_ag(T55, T56)) → U9_AG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))
P1_IN_GG(s(0), s(s(T42))) → U3_GG(T42, p16_in_g(T42))
P1_IN_GG(s(0), s(s(T42))) → P16_IN_G(T42)
P1_IN_GG(s(s(0)), s(s(s(T45)))) → U4_GG(T45, p28_in_g(T45))
P1_IN_GG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → U5_GG(T48, p43_in_g(T48))
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_GG(T51, p61_in_g(T51))
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_GG(T54, p82_in_g(T54))
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_GG(T55, T56, less152_in_gg(T55, T56))
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_GG(T55, T56)
LESS152_IN_GG(s(T59), s(T60)) → U20_GG(T59, T60, less152_in_gg(T59, T60))
LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
U8_GG(T55, T56, less152_out_gg(T55, T56)) → U9_GG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_GG(T55, T56, less152_out_gg(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U1_GG(x1, x2)  =  U1_GG(x1, x2)
LESS86_IN_G(x1)  =  LESS86_IN_G(x1)
U2_GG(x1, x2)  =  U2_GG(x2)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
U1_AG(x1, x2)  =  U1_AG(x1, x2)
U2_AG(x1, x2)  =  U2_AG(x2)
U3_AG(x1, x2)  =  U3_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x2)
U4_AG(x1, x2)  =  U4_AG(x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
U13_G(x1, x2)  =  U13_G(x2)
U5_AG(x1, x2)  =  U5_AG(x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x2)
U6_AG(x1, x2)  =  U6_AG(x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
U17_G(x1, x2)  =  U17_G(x2)
U7_AG(x1, x2)  =  U7_AG(x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U19_G(x1, x2)  =  U19_G(x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)
U20_AG(x1, x2, x3)  =  U20_AG(x3)
U9_AG(x1, x2, x3)  =  U9_AG(x1, x3)
U3_GG(x1, x2)  =  U3_GG(x2)
U4_GG(x1, x2)  =  U4_GG(x2)
U5_GG(x1, x2)  =  U5_GG(x2)
U6_GG(x1, x2)  =  U6_GG(x2)
U7_GG(x1, x2)  =  U7_GG(x2)
U8_GG(x1, x2, x3)  =  U8_GG(x2, x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)
U20_GG(x1, x2, x3)  =  U20_GG(x3)
U9_GG(x1, x2, x3)  =  U9_GG(x3)

We have to consider all (P,R,Pi)-chains

(7) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 41 less nodes.

(8) Complex Obligation (AND)

(9) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(10) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(11) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(12) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(13) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(14) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
    The graph contains the following edges 1 > 1, 2 > 2

(15) TRUE

(16) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(17) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(18) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(19) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(20) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T60)) → LESS152_IN_AG(T60)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(21) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS152_IN_AG(s(T60)) → LESS152_IN_AG(T60)
    The graph contains the following edges 1 > 1

(22) TRUE

(23) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
p1_out_gg(x1, x2)  =  p1_out_gg
U2_gg(x1, x2)  =  U2_gg(x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1)
U2_ag(x1, x2)  =  U2_ag(x2)
U3_ag(x1, x2)  =  U3_ag(x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g
U11_g(x1, x2)  =  U11_g(x2)
U4_ag(x1, x2)  =  U4_ag(x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g
U13_g(x1, x2)  =  U13_g(x2)
U5_ag(x1, x2)  =  U5_ag(x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g
U15_g(x1, x2)  =  U15_g(x2)
U6_ag(x1, x2)  =  U6_ag(x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g
U17_g(x1, x2)  =  U17_g(x2)
U7_ag(x1, x2)  =  U7_ag(x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g
U19_g(x1, x2)  =  U19_g(x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x3)
U3_gg(x1, x2)  =  U3_gg(x2)
U4_gg(x1, x2)  =  U4_gg(x2)
U5_gg(x1, x2)  =  U5_gg(x2)
U6_gg(x1, x2)  =  U6_gg(x2)
U7_gg(x1, x2)  =  U7_gg(x2)
U8_gg(x1, x2, x3)  =  U8_gg(x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg
U20_gg(x1, x2, x3)  =  U20_gg(x3)
U9_gg(x1, x2, x3)  =  U9_gg(x3)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(24) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(25) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1)
U20_ag(x1, x2, x3)  =  U20_ag(x3)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(26) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(27) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(28) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(29) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(30) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)

(31) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(32) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)

(33) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(34) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)

(35) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(36) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)

(37) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(38) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P82_IN_G(T31) → U18_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)

(39) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g
less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(40) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(41) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(42) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

less86_in_g(x0)

(43) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(44) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(45) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(46) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56)) at position [1] we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))

(47) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(48) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(49) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(50) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U10_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(51) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(52) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

(53) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(54) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U12_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(55) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(56) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

(57) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(58) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U14_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(59) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(60) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

(61) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(62) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U16_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(63) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(64) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U18_G(T31, less86_out_g) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(65) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(66) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_AG(T56, less152_out_ag(T55)) → P1_IN_AG(s(s(s(s(s(s(T56))))))) we obtained the following new rules [LPAR04]:

U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(67) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(68) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))

(69) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(70) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0))))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

(71) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(72) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0)))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

(73) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(74) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

(75) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(76) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0)) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

(77) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g)
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g)
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g)
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g)
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g)
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(less152_in_ag(x0)))
U10_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1)) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0)
less152_in_ag(s(T60)) → U20_ag(less152_in_ag(T60))
U20_ag(less152_out_ag(T59)) → less152_out_ag(s(T59))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0)

We have to consider all (P,Q,R)-chains.

(78) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U8_AG(s(z0), less152_out_ag(0)) evaluates to t =U8_AG(s(z0), less152_out_ag(0))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U8_AG(s(z0), less152_out_ag(0))P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
with rule U8_AG(s(z0'), less152_out_ag(0)) → P1_IN_AG(s(s(s(s(s(s(s(z0')))))))) at position [] and matcher [z0' / z0]

P1_IN_AG(s(s(s(s(s(s(s(z0))))))))U8_AG(s(z0), less152_out_ag(0))
with rule P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(79) FALSE

(80) PrologToPiTRSProof (SOUND transformation)

We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
p1_in: (b,b) (f,b)
p16_in: (b)
p28_in: (b)
p43_in: (b)
p61_in: (b)
p82_in: (b)
less152_in: (f,b) (b,b)
Transforming Prolog into the following Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)

Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog

(81) Obligation:

Pi-finite rewrite system:
The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)

(82) DependencyPairsProof (EQUIVALENT transformation)

Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → U1_GG(T31, less86_in_g(T31))
P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_GG(T31, less86_out_g(T31)) → U2_GG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_GG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → U1_AG(T31, less86_in_g(T31))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_AG(T31, less86_out_g(T31)) → U2_AG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_AG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(0), s(s(T42))) → U3_AG(T42, p16_in_g(T42))
P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
P16_IN_G(s(s(s(s(T31))))) → LESS86_IN_G(T31)
U10_G(T31, less86_out_g(T31)) → U11_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → U4_AG(T45, p28_in_g(T45))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
P28_IN_G(s(s(s(T31)))) → LESS86_IN_G(T31)
U12_G(T31, less86_out_g(T31)) → U13_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → U5_AG(T48, p43_in_g(T48))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
P43_IN_G(s(s(T31))) → LESS86_IN_G(T31)
U14_G(T31, less86_out_g(T31)) → U15_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_AG(T51, p61_in_g(T51))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
P61_IN_G(s(T31)) → LESS86_IN_G(T31)
U16_G(T31, less86_out_g(T31)) → U17_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_AG(T54, p82_in_g(T54))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
P82_IN_G(T31) → LESS86_IN_G(T31)
U18_G(T31, less86_out_g(T31)) → U19_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_AG(T55, T56)
LESS152_IN_AG(s(T59), s(T60)) → U20_AG(T59, T60, less152_in_ag(T59, T60))
LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)
U8_AG(T55, T56, less152_out_ag(T55, T56)) → U9_AG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))
P1_IN_GG(s(0), s(s(T42))) → U3_GG(T42, p16_in_g(T42))
P1_IN_GG(s(0), s(s(T42))) → P16_IN_G(T42)
P1_IN_GG(s(s(0)), s(s(s(T45)))) → U4_GG(T45, p28_in_g(T45))
P1_IN_GG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → U5_GG(T48, p43_in_g(T48))
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_GG(T51, p61_in_g(T51))
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_GG(T54, p82_in_g(T54))
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_GG(T55, T56, less152_in_gg(T55, T56))
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_GG(T55, T56)
LESS152_IN_GG(s(T59), s(T60)) → U20_GG(T59, T60, less152_in_gg(T59, T60))
LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
U8_GG(T55, T56, less152_out_gg(T55, T56)) → U9_GG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_GG(T55, T56, less152_out_gg(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U1_GG(x1, x2)  =  U1_GG(x1, x2)
LESS86_IN_G(x1)  =  LESS86_IN_G(x1)
U2_GG(x1, x2)  =  U2_GG(x1, x2)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
U1_AG(x1, x2)  =  U1_AG(x1, x2)
U2_AG(x1, x2)  =  U2_AG(x1, x2)
U3_AG(x1, x2)  =  U3_AG(x1, x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x1, x2)
U4_AG(x1, x2)  =  U4_AG(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
U13_G(x1, x2)  =  U13_G(x1, x2)
U5_AG(x1, x2)  =  U5_AG(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x1, x2)
U6_AG(x1, x2)  =  U6_AG(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
U17_G(x1, x2)  =  U17_G(x1, x2)
U7_AG(x1, x2)  =  U7_AG(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U19_G(x1, x2)  =  U19_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)
U20_AG(x1, x2, x3)  =  U20_AG(x2, x3)
U9_AG(x1, x2, x3)  =  U9_AG(x1, x2, x3)
U3_GG(x1, x2)  =  U3_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x1, x2)
U5_GG(x1, x2)  =  U5_GG(x1, x2)
U6_GG(x1, x2)  =  U6_GG(x1, x2)
U7_GG(x1, x2)  =  U7_GG(x1, x2)
U8_GG(x1, x2, x3)  =  U8_GG(x1, x2, x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)
U20_GG(x1, x2, x3)  =  U20_GG(x1, x2, x3)
U9_GG(x1, x2, x3)  =  U9_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(83) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → U1_GG(T31, less86_in_g(T31))
P1_IN_GG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_GG(T31, less86_out_g(T31)) → U2_GG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_GG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → U1_AG(T31, less86_in_g(T31))
P1_IN_AG(0, s(s(s(s(s(s(T31))))))) → LESS86_IN_G(T31)
U1_AG(T31, less86_out_g(T31)) → U2_AG(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U1_AG(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(0), s(s(T42))) → U3_AG(T42, p16_in_g(T42))
P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
P16_IN_G(s(s(s(s(T31))))) → LESS86_IN_G(T31)
U10_G(T31, less86_out_g(T31)) → U11_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → U4_AG(T45, p28_in_g(T45))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
P28_IN_G(s(s(s(T31)))) → LESS86_IN_G(T31)
U12_G(T31, less86_out_g(T31)) → U13_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → U5_AG(T48, p43_in_g(T48))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
P43_IN_G(s(s(T31))) → LESS86_IN_G(T31)
U14_G(T31, less86_out_g(T31)) → U15_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_AG(T51, p61_in_g(T51))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
P61_IN_G(s(T31)) → LESS86_IN_G(T31)
U16_G(T31, less86_out_g(T31)) → U17_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_AG(T54, p82_in_g(T54))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
P82_IN_G(T31) → LESS86_IN_G(T31)
U18_G(T31, less86_out_g(T31)) → U19_G(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_AG(T55, T56)
LESS152_IN_AG(s(T59), s(T60)) → U20_AG(T59, T60, less152_in_ag(T59, T60))
LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)
U8_AG(T55, T56, less152_out_ag(T55, T56)) → U9_AG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))
P1_IN_GG(s(0), s(s(T42))) → U3_GG(T42, p16_in_g(T42))
P1_IN_GG(s(0), s(s(T42))) → P16_IN_G(T42)
P1_IN_GG(s(s(0)), s(s(s(T45)))) → U4_GG(T45, p28_in_g(T45))
P1_IN_GG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → U5_GG(T48, p43_in_g(T48))
P1_IN_GG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_GG(T51, p61_in_g(T51))
P1_IN_GG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_GG(T54, p82_in_g(T54))
P1_IN_GG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_GG(T55, T56, less152_in_gg(T55, T56))
P1_IN_GG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → LESS152_IN_GG(T55, T56)
LESS152_IN_GG(s(T59), s(T60)) → U20_GG(T59, T60, less152_in_gg(T59, T60))
LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
U8_GG(T55, T56, less152_out_gg(T55, T56)) → U9_GG(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U8_GG(T55, T56, less152_out_gg(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
P1_IN_GG(x1, x2)  =  P1_IN_GG(x1, x2)
U1_GG(x1, x2)  =  U1_GG(x1, x2)
LESS86_IN_G(x1)  =  LESS86_IN_G(x1)
U2_GG(x1, x2)  =  U2_GG(x1, x2)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
U1_AG(x1, x2)  =  U1_AG(x1, x2)
U2_AG(x1, x2)  =  U2_AG(x1, x2)
U3_AG(x1, x2)  =  U3_AG(x1, x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
U11_G(x1, x2)  =  U11_G(x1, x2)
U4_AG(x1, x2)  =  U4_AG(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
U13_G(x1, x2)  =  U13_G(x1, x2)
U5_AG(x1, x2)  =  U5_AG(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
U15_G(x1, x2)  =  U15_G(x1, x2)
U6_AG(x1, x2)  =  U6_AG(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
U17_G(x1, x2)  =  U17_G(x1, x2)
U7_AG(x1, x2)  =  U7_AG(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U19_G(x1, x2)  =  U19_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)
U20_AG(x1, x2, x3)  =  U20_AG(x2, x3)
U9_AG(x1, x2, x3)  =  U9_AG(x1, x2, x3)
U3_GG(x1, x2)  =  U3_GG(x1, x2)
U4_GG(x1, x2)  =  U4_GG(x1, x2)
U5_GG(x1, x2)  =  U5_GG(x1, x2)
U6_GG(x1, x2)  =  U6_GG(x1, x2)
U7_GG(x1, x2)  =  U7_GG(x1, x2)
U8_GG(x1, x2, x3)  =  U8_GG(x1, x2, x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)
U20_GG(x1, x2, x3)  =  U20_GG(x1, x2, x3)
U9_GG(x1, x2, x3)  =  U9_GG(x1, x2, x3)

We have to consider all (P,R,Pi)-chains

(84) DependencyGraphProof (EQUIVALENT transformation)

The approximation of the Dependency Graph [LOPSTR] contains 3 SCCs with 41 less nodes.

(85) Complex Obligation (AND)

(86) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
LESS152_IN_GG(x1, x2)  =  LESS152_IN_GG(x1, x2)

We have to consider all (P,R,Pi)-chains

(87) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(88) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

R is empty.
Pi is empty.
We have to consider all (P,R,Pi)-chains

(89) PiDPToQDPProof (EQUIVALENT transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(90) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(91) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS152_IN_GG(s(T59), s(T60)) → LESS152_IN_GG(T59, T60)
    The graph contains the following edges 1 > 1, 2 > 2

(92) TRUE

(93) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(94) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(95) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T59), s(T60)) → LESS152_IN_AG(T59, T60)

R is empty.
The argument filtering Pi contains the following mapping:
s(x1)  =  s(x1)
LESS152_IN_AG(x1, x2)  =  LESS152_IN_AG(x2)

We have to consider all (P,R,Pi)-chains

(96) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(97) Obligation:

Q DP problem:
The TRS P consists of the following rules:

LESS152_IN_AG(s(T60)) → LESS152_IN_AG(T60)

R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.

(98) QDPSizeChangeProof (EQUIVALENT transformation)

By using the subterm criterion [SUBTERM_CRITERION] together with the size-change analysis [AAECC05] we have proven that there are no infinite chains for this DP problem.

From the DPs we obtained the following set of size-change graphs:

  • LESS152_IN_AG(s(T60)) → LESS152_IN_AG(T60)
    The graph contains the following edges 1 > 1

(99) TRUE

(100) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

p1_in_gg(0, s(s(s(s(s(s(T31))))))) → U1_gg(T31, less86_in_g(T31))
less86_in_g(s(T39)) → less86_out_g(s(T39))
U1_gg(T31, less86_out_g(T31)) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
U1_gg(T31, less86_out_g(T31)) → U2_gg(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(0, s(s(s(s(s(s(T31))))))) → U1_ag(T31, less86_in_g(T31))
U1_ag(T31, less86_out_g(T31)) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U1_ag(T31, less86_out_g(T31)) → U2_ag(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(0), s(s(T42))) → U3_ag(T42, p16_in_g(T42))
p16_in_g(s(s(s(s(T31))))) → U10_g(T31, less86_in_g(T31))
U10_g(T31, less86_out_g(T31)) → p16_out_g(s(s(s(s(T31)))))
U10_g(T31, less86_out_g(T31)) → U11_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(0)), s(s(s(T45)))) → U4_ag(T45, p28_in_g(T45))
p28_in_g(s(s(s(T31)))) → U12_g(T31, less86_in_g(T31))
U12_g(T31, less86_out_g(T31)) → p28_out_g(s(s(s(T31))))
U12_g(T31, less86_out_g(T31)) → U13_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(0))), s(s(s(s(T48))))) → U5_ag(T48, p43_in_g(T48))
p43_in_g(s(s(T31))) → U14_g(T31, less86_in_g(T31))
U14_g(T31, less86_out_g(T31)) → p43_out_g(s(s(T31)))
U14_g(T31, less86_out_g(T31)) → U15_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_ag(T51, p61_in_g(T51))
p61_in_g(s(T31)) → U16_g(T31, less86_in_g(T31))
U16_g(T31, less86_out_g(T31)) → p61_out_g(s(T31))
U16_g(T31, less86_out_g(T31)) → U17_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_ag(T54, p82_in_g(T54))
p82_in_g(T31) → U18_g(T31, less86_in_g(T31))
U18_g(T31, less86_out_g(T31)) → p82_out_g(T31)
U18_g(T31, less86_out_g(T31)) → U19_g(T31, p1_in_ag(s(T32), s(s(s(s(s(s(T31))))))))
p1_in_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_ag(T55, T56, less152_in_ag(T55, T56))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_ag(T55, T56, less152_out_ag(T55, T56)) → U9_ag(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_ag(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_ag(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U19_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p82_out_g(T31)
U7_ag(T54, p82_out_g(T54)) → p1_out_ag(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
U17_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p61_out_g(s(T31))
U6_ag(T51, p61_out_g(T51)) → p1_out_ag(s(s(s(s(0)))), s(s(s(s(s(T51))))))
U15_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p43_out_g(s(s(T31)))
U5_ag(T48, p43_out_g(T48)) → p1_out_ag(s(s(s(0))), s(s(s(s(T48)))))
U13_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p28_out_g(s(s(s(T31))))
U4_ag(T45, p28_out_g(T45)) → p1_out_ag(s(s(0)), s(s(s(T45))))
U11_g(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p16_out_g(s(s(s(s(T31)))))
U3_ag(T42, p16_out_g(T42)) → p1_out_ag(s(0), s(s(T42)))
U2_ag(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_ag(0, s(s(s(s(s(s(T31)))))))
U2_gg(T31, p1_out_ag(s(T32), s(s(s(s(s(s(T31)))))))) → p1_out_gg(0, s(s(s(s(s(s(T31)))))))
p1_in_gg(s(0), s(s(T42))) → U3_gg(T42, p16_in_g(T42))
U3_gg(T42, p16_out_g(T42)) → p1_out_gg(s(0), s(s(T42)))
p1_in_gg(s(s(0)), s(s(s(T45)))) → U4_gg(T45, p28_in_g(T45))
U4_gg(T45, p28_out_g(T45)) → p1_out_gg(s(s(0)), s(s(s(T45))))
p1_in_gg(s(s(s(0))), s(s(s(s(T48))))) → U5_gg(T48, p43_in_g(T48))
U5_gg(T48, p43_out_g(T48)) → p1_out_gg(s(s(s(0))), s(s(s(s(T48)))))
p1_in_gg(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → U6_gg(T51, p61_in_g(T51))
U6_gg(T51, p61_out_g(T51)) → p1_out_gg(s(s(s(s(0)))), s(s(s(s(s(T51))))))
p1_in_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → U7_gg(T54, p82_in_g(T54))
U7_gg(T54, p82_out_g(T54)) → p1_out_gg(s(s(s(s(s(0))))), s(s(s(s(s(s(T54)))))))
p1_in_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_gg(T55, T56, less152_in_gg(T55, T56))
less152_in_gg(0, s(T58)) → less152_out_gg(0, s(T58))
less152_in_gg(s(T59), s(T60)) → U20_gg(T59, T60, less152_in_gg(T59, T60))
U20_gg(T59, T60, less152_out_gg(T59, T60)) → less152_out_gg(s(T59), s(T60))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))
U8_gg(T55, T56, less152_out_gg(T55, T56)) → U9_gg(T55, T56, p1_in_ag(s(T57), s(s(s(s(s(s(T56))))))))
U9_gg(T55, T56, p1_out_ag(s(T57), s(s(s(s(s(s(T56)))))))) → p1_out_gg(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56)))))))

The argument filtering Pi contains the following mapping:
p1_in_gg(x1, x2)  =  p1_in_gg(x1, x2)
0  =  0
s(x1)  =  s(x1)
U1_gg(x1, x2)  =  U1_gg(x1, x2)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
p1_out_gg(x1, x2)  =  p1_out_gg(x1, x2)
U2_gg(x1, x2)  =  U2_gg(x1, x2)
p1_in_ag(x1, x2)  =  p1_in_ag(x2)
U1_ag(x1, x2)  =  U1_ag(x1, x2)
p1_out_ag(x1, x2)  =  p1_out_ag(x1, x2)
U2_ag(x1, x2)  =  U2_ag(x1, x2)
U3_ag(x1, x2)  =  U3_ag(x1, x2)
p16_in_g(x1)  =  p16_in_g(x1)
U10_g(x1, x2)  =  U10_g(x1, x2)
p16_out_g(x1)  =  p16_out_g(x1)
U11_g(x1, x2)  =  U11_g(x1, x2)
U4_ag(x1, x2)  =  U4_ag(x1, x2)
p28_in_g(x1)  =  p28_in_g(x1)
U12_g(x1, x2)  =  U12_g(x1, x2)
p28_out_g(x1)  =  p28_out_g(x1)
U13_g(x1, x2)  =  U13_g(x1, x2)
U5_ag(x1, x2)  =  U5_ag(x1, x2)
p43_in_g(x1)  =  p43_in_g(x1)
U14_g(x1, x2)  =  U14_g(x1, x2)
p43_out_g(x1)  =  p43_out_g(x1)
U15_g(x1, x2)  =  U15_g(x1, x2)
U6_ag(x1, x2)  =  U6_ag(x1, x2)
p61_in_g(x1)  =  p61_in_g(x1)
U16_g(x1, x2)  =  U16_g(x1, x2)
p61_out_g(x1)  =  p61_out_g(x1)
U17_g(x1, x2)  =  U17_g(x1, x2)
U7_ag(x1, x2)  =  U7_ag(x1, x2)
p82_in_g(x1)  =  p82_in_g(x1)
U18_g(x1, x2)  =  U18_g(x1, x2)
p82_out_g(x1)  =  p82_out_g(x1)
U19_g(x1, x2)  =  U19_g(x1, x2)
U8_ag(x1, x2, x3)  =  U8_ag(x2, x3)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
U9_ag(x1, x2, x3)  =  U9_ag(x1, x2, x3)
U3_gg(x1, x2)  =  U3_gg(x1, x2)
U4_gg(x1, x2)  =  U4_gg(x1, x2)
U5_gg(x1, x2)  =  U5_gg(x1, x2)
U6_gg(x1, x2)  =  U6_gg(x1, x2)
U7_gg(x1, x2)  =  U7_gg(x1, x2)
U8_gg(x1, x2, x3)  =  U8_gg(x1, x2, x3)
less152_in_gg(x1, x2)  =  less152_in_gg(x1, x2)
less152_out_gg(x1, x2)  =  less152_out_gg(x1, x2)
U20_gg(x1, x2, x3)  =  U20_gg(x1, x2, x3)
U9_gg(x1, x2, x3)  =  U9_gg(x1, x2, x3)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(101) UsableRulesProof (EQUIVALENT transformation)

For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.

(102) Obligation:

Pi DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(0), s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(0)), s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(0))), s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(0)))), s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(0))))), s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(T32), s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T55)))))), s(s(s(s(s(s(T56))))))) → U8_AG(T55, T56, less152_in_ag(T55, T56))
U8_AG(T55, T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(T57), s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(0, s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T59), s(T60)) → U20_ag(T59, T60, less152_in_ag(T59, T60))
U20_ag(T59, T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The argument filtering Pi contains the following mapping:
0  =  0
s(x1)  =  s(x1)
less86_in_g(x1)  =  less86_in_g(x1)
less86_out_g(x1)  =  less86_out_g(x1)
less152_in_ag(x1, x2)  =  less152_in_ag(x2)
less152_out_ag(x1, x2)  =  less152_out_ag(x1, x2)
U20_ag(x1, x2, x3)  =  U20_ag(x2, x3)
P1_IN_AG(x1, x2)  =  P1_IN_AG(x2)
P16_IN_G(x1)  =  P16_IN_G(x1)
U10_G(x1, x2)  =  U10_G(x1, x2)
P28_IN_G(x1)  =  P28_IN_G(x1)
U12_G(x1, x2)  =  U12_G(x1, x2)
P43_IN_G(x1)  =  P43_IN_G(x1)
U14_G(x1, x2)  =  U14_G(x1, x2)
P61_IN_G(x1)  =  P61_IN_G(x1)
U16_G(x1, x2)  =  U16_G(x1, x2)
P82_IN_G(x1)  =  P82_IN_G(x1)
U18_G(x1, x2)  =  U18_G(x1, x2)
U8_AG(x1, x2, x3)  =  U8_AG(x2, x3)

We have to consider all (P,R,Pi)-chains

(103) PiDPToQDPProof (SOUND transformation)

Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.

(104) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(105) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(106) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31))
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(107) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P16_IN_G(s(s(s(s(T31))))) → U10_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))

(108) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31))
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(109) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P28_IN_G(s(s(s(T31)))) → U12_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))

(110) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31))
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(111) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P43_IN_G(s(s(T31))) → U14_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))

(112) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31))
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(113) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P61_IN_G(s(T31)) → U16_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))

(114) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P82_IN_G(T31) → U18_G(T31, less86_in_g(T31))
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(115) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P82_IN_G(T31) → U18_G(T31, less86_in_g(T31)) at position [1] we obtained the following new rules [LPAR04]:

P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))

(116) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less86_in_g(s(T39)) → less86_out_g(s(T39))
less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(117) UsableRulesProof (EQUIVALENT transformation)

As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.

(118) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less86_in_g(x0)
less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(119) QReductionProof (EQUIVALENT transformation)

We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].

less86_in_g(x0)

(120) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(121) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(122) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(123) Narrowing (SOUND transformation)

By narrowing [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(T56))))))) → U8_AG(T56, less152_in_ag(T56)) at position [1] we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))

(124) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(T42))) → P16_IN_G(T42)
U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(125) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(T42))) → P16_IN_G(T42) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

(126) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(127) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U10_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(128) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45)
U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(129) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(T45)))) → P28_IN_G(T45) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

(130) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(131) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U12_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(132) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48)
U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(133) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(T48))))) → P43_IN_G(T48) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

(134) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(135) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U14_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(136) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51)
U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(137) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(T51)))))) → P61_IN_G(T51) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

(138) Obligation:

Q DP problem:
The TRS P consists of the following rules:

U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(139) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U16_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(140) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31)))))))
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(141) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U18_G(T31, less86_out_g(T31)) → P1_IN_AG(s(s(s(s(s(s(T31))))))) we obtained the following new rules [LPAR04]:

U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(142) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56)))))))
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(143) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule U8_AG(T56, less152_out_ag(T55, T56)) → P1_IN_AG(s(s(s(s(s(s(T56))))))) we obtained the following new rules [LPAR04]:

U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

(144) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54)
P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(145) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(T54))))))) → P82_IN_G(T54) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))

(146) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0)))))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(147) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P16_IN_G(s(s(s(s(z0))))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

(148) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(149) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P28_IN_G(s(s(s(z0)))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))

(150) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0)))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(151) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P43_IN_G(s(s(z0))) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))

(152) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(153) Instantiation (EQUIVALENT transformation)

By instantiating [LPAR04] the rule P1_IN_AG(s(s(s(s(s(s(z0))))))) → P61_IN_G(s(z0)) we obtained the following new rules [LPAR04]:

P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))

(154) Obligation:

Q DP problem:
The TRS P consists of the following rules:

P16_IN_G(s(s(s(s(s(x0)))))) → U10_G(s(x0), less86_out_g(s(x0)))
P28_IN_G(s(s(s(s(x0))))) → U12_G(s(x0), less86_out_g(s(x0)))
P43_IN_G(s(s(s(x0)))) → U14_G(s(x0), less86_out_g(s(x0)))
P61_IN_G(s(s(x0))) → U16_G(s(x0), less86_out_g(s(x0)))
P82_IN_G(s(x0)) → U18_G(s(x0), less86_out_g(s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))
P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), U20_ag(x0, less152_in_ag(x0)))
U10_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P28_IN_G(s(s(s(s(z0)))))
U12_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P43_IN_G(s(s(s(z0))))
U14_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P61_IN_G(s(s(z0)))
U16_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U18_G(s(z0), less86_out_g(s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(0, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
U8_AG(s(z0), less152_out_ag(x1, s(z0))) → P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P82_IN_G(s(z0))
P1_IN_AG(s(s(s(s(s(s(s(z0)))))))) → P16_IN_G(s(s(s(s(s(z0))))))

The TRS R consists of the following rules:

less152_in_ag(s(T58)) → less152_out_ag(0, s(T58))
less152_in_ag(s(T60)) → U20_ag(T60, less152_in_ag(T60))
U20_ag(T60, less152_out_ag(T59, T60)) → less152_out_ag(s(T59), s(T60))

The set Q consists of the following terms:

less152_in_ag(x0)
U20_ag(x0, x1)

We have to consider all (P,Q,R)-chains.

(155) NonTerminationProof (EQUIVALENT transformation)

We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:

s = U8_AG(s(z0), less152_out_ag(0, s(z0))) evaluates to t =U8_AG(s(z0), less152_out_ag(0, s(z0)))

Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
  • Matcher: [ ]
  • Semiunifier: [ ]




Rewriting sequence

U8_AG(s(z0), less152_out_ag(0, s(z0)))P1_IN_AG(s(s(s(s(s(s(s(z0))))))))
with rule U8_AG(s(z0'), less152_out_ag(0, s(z0'))) → P1_IN_AG(s(s(s(s(s(s(s(z0')))))))) at position [] and matcher [z0' / z0]

P1_IN_AG(s(s(s(s(s(s(s(z0))))))))U8_AG(s(z0), less152_out_ag(0, s(z0)))
with rule P1_IN_AG(s(s(s(s(s(s(s(x0)))))))) → U8_AG(s(x0), less152_out_ag(0, s(x0)))

Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence


All these steps are and every following step will be a correct step w.r.t to Q.



(156) FALSE