(0) Obligation:
Clauses:
q(X) :- ','(p(X), !).
p(0).
p(s(X)) :- p(X).
Queries:
q(a).
(1) PrologToPrologProblemTransformerProof (SOUND transformation)
Built Prolog problem from termination graph.
(2) Obligation:
Clauses:
p3(0).
p3(s(T5)) :- p3(T5).
q1(0).
q1(s(T5)) :- p3(T5).
Queries:
q1(a).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
q1_in: (f)
p3_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
Q1_IN_A(s(T5)) → U2_A(T5, p3_in_a(T5))
Q1_IN_A(s(T5)) → P3_IN_A(T5)
P3_IN_A(s(T5)) → U1_A(T5, p3_in_a(T5))
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Q1_IN_A(
x1) =
Q1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
P3_IN_A(
x1) =
P3_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q1_IN_A(s(T5)) → U2_A(T5, p3_in_a(T5))
Q1_IN_A(s(T5)) → P3_IN_A(T5)
P3_IN_A(s(T5)) → U1_A(T5, p3_in_a(T5))
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Q1_IN_A(
x1) =
Q1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
P3_IN_A(
x1) =
P3_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
P3_IN_A(
x1) =
P3_IN_A
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_A(s(T5)) → P3_IN_A(T5)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P3_IN_A(
x1) =
P3_IN_A
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P3_IN_A → P3_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(13) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P3_IN_A evaluates to t =
P3_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P3_IN_A to P3_IN_A.
(14) FALSE
(15) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
q1_in: (f)
p3_in: (f)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(16) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
(17) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
Q1_IN_A(s(T5)) → U2_A(T5, p3_in_a(T5))
Q1_IN_A(s(T5)) → P3_IN_A(T5)
P3_IN_A(s(T5)) → U1_A(T5, p3_in_a(T5))
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Q1_IN_A(
x1) =
Q1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
P3_IN_A(
x1) =
P3_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
We have to consider all (P,R,Pi)-chains
(18) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q1_IN_A(s(T5)) → U2_A(T5, p3_in_a(T5))
Q1_IN_A(s(T5)) → P3_IN_A(T5)
P3_IN_A(s(T5)) → U1_A(T5, p3_in_a(T5))
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
Q1_IN_A(
x1) =
Q1_IN_A
U2_A(
x1,
x2) =
U2_A(
x2)
P3_IN_A(
x1) =
P3_IN_A
U1_A(
x1,
x2) =
U1_A(
x2)
We have to consider all (P,R,Pi)-chains
(19) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 3 less nodes.
(20) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_A(s(T5)) → P3_IN_A(T5)
The TRS R consists of the following rules:
q1_in_a(0) → q1_out_a(0)
q1_in_a(s(T5)) → U2_a(T5, p3_in_a(T5))
p3_in_a(0) → p3_out_a(0)
p3_in_a(s(T5)) → U1_a(T5, p3_in_a(T5))
U1_a(T5, p3_out_a(T5)) → p3_out_a(s(T5))
U2_a(T5, p3_out_a(T5)) → q1_out_a(s(T5))
The argument filtering Pi contains the following mapping:
q1_in_a(
x1) =
q1_in_a
q1_out_a(
x1) =
q1_out_a(
x1)
U2_a(
x1,
x2) =
U2_a(
x2)
p3_in_a(
x1) =
p3_in_a
p3_out_a(
x1) =
p3_out_a(
x1)
U1_a(
x1,
x2) =
U1_a(
x2)
s(
x1) =
s(
x1)
P3_IN_A(
x1) =
P3_IN_A
We have to consider all (P,R,Pi)-chains
(21) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(22) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
P3_IN_A(s(T5)) → P3_IN_A(T5)
R is empty.
The argument filtering Pi contains the following mapping:
s(
x1) =
s(
x1)
P3_IN_A(
x1) =
P3_IN_A
We have to consider all (P,R,Pi)-chains
(23) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
P3_IN_A → P3_IN_A
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(25) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by semiunifying a rule from P directly.
s =
P3_IN_A evaluates to t =
P3_IN_AThus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceThe DP semiunifies directly so there is only one rewrite step from P3_IN_A to P3_IN_A.
(26) FALSE