(0) Obligation:
Clauses:
q(X) :- ','(not_zero(X), ','(p(X, Y), q(Y))).
p(0, 0).
p(s(X), X).
zero(0).
not_zero(X) :- ','(zero(X), ','(!, failure(a))).
not_zero(X1).
failure(b).
Queries:
q(g).
(1) CutEliminatorProof (SOUND transformation)
Eliminated all cuts by simply ignoring them[PROLOG].
(2) Obligation:
Clauses:
q(X) :- ','(not_zero(X), ','(p(X, Y), q(Y))).
p(0, 0).
p(s(X), X).
zero(0).
not_zero(X) :- ','(zero(X), failure(a)).
not_zero(X1).
failure(b).
Queries:
q(g).
(3) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
q_in: (b)
not_zero_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
q_out_g(
x1) =
q_out_g
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(4) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
q_out_g(
x1) =
q_out_g
(5) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
Q_IN_G(X) → NOT_ZERO_IN_G(X)
NOT_ZERO_IN_G(X) → U4_G(X, zero_in_g(X))
NOT_ZERO_IN_G(X) → ZERO_IN_G(X)
U4_G(X, zero_out_g(X)) → U5_G(X, failure_in_g(a))
U4_G(X, zero_out_g(X)) → FAILURE_IN_G(a)
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U1_G(X, not_zero_out_g(X)) → P_IN_GA(X, Y)
U2_G(X, p_out_ga(X, Y)) → U3_G(X, q_in_g(Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
q_out_g(
x1) =
q_out_g
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
NOT_ZERO_IN_G(
x1) =
NOT_ZERO_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
ZERO_IN_G(
x1) =
ZERO_IN_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
We have to consider all (P,R,Pi)-chains
(6) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
Q_IN_G(X) → NOT_ZERO_IN_G(X)
NOT_ZERO_IN_G(X) → U4_G(X, zero_in_g(X))
NOT_ZERO_IN_G(X) → ZERO_IN_G(X)
U4_G(X, zero_out_g(X)) → U5_G(X, failure_in_g(a))
U4_G(X, zero_out_g(X)) → FAILURE_IN_G(a)
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U1_G(X, not_zero_out_g(X)) → P_IN_GA(X, Y)
U2_G(X, p_out_ga(X, Y)) → U3_G(X, q_in_g(Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
q_out_g(
x1) =
q_out_g
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
NOT_ZERO_IN_G(
x1) =
NOT_ZERO_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x2)
ZERO_IN_G(
x1) =
ZERO_IN_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x2)
We have to consider all (P,R,Pi)-chains
(7) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(8) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
U2_g(
x1,
x2) =
U2_g(
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x2)
q_out_g(
x1) =
q_out_g
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(9) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(10) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
zero_in_g(0) → zero_out_g(0)
The argument filtering Pi contains the following mapping:
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g
U5_g(
x1,
x2) =
U5_g(
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x2)
s(
x1) =
s(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U2_G(
x1,
x2) =
U2_G(
x2)
We have to consider all (P,R,Pi)-chains
(11) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(12) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
p_in_ga(s(X)) → p_out_ga(X)
not_zero_in_g(X) → U4_g(zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g
U4_g(zero_out_g) → U5_g(failure_in_g(a))
zero_in_g(0) → zero_out_g
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(13) UsableRulesReductionPairsProof (EQUIVALENT transformation)
By using the usable rules with reduction pair processor [LPAR04] with a polynomial ordering [POLO], all dependency pairs and the corresponding usable rules [FROCOS05] can be oriented non-strictly. All non-usable rules are removed, and those dependency pairs and usable rules that have been oriented strictly or contain non-usable symbols in their left-hand side are removed as well.
No dependency pairs are removed.
The following rules are removed from R:
p_in_ga(s(X)) → p_out_ga(X)
Used ordering: POLO with Polynomial interpretation [POLO]:
POL(0) = 0
POL(Q_IN_G(x1)) = 2·x1
POL(U1_G(x1, x2)) = x1 + x2
POL(U2_G(x1)) = x1
POL(U4_g(x1)) = x1
POL(U5_g(x1)) = x1
POL(a) = 0
POL(failure_in_g(x1)) = x1
POL(not_zero_in_g(x1)) = x1
POL(not_zero_out_g) = 0
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(s(x1)) = 1 + 2·x1
POL(zero_in_g(x1)) = x1
POL(zero_out_g) = 0
(14) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
not_zero_in_g(X) → U4_g(zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g
zero_in_g(0) → zero_out_g
U4_g(zero_out_g) → U5_g(failure_in_g(a))
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(15) MRRProof (EQUIVALENT transformation)
By using the rule removal processor [LPAR04] with the following ordering, at least one Dependency Pair or term rewrite system rule of this QDP problem can be strictly oriented.
Strictly oriented rules of the TRS R:
not_zero_in_g(X) → U4_g(zero_in_g(X))
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(Q_IN_G(x1)) = 1 + 2·x1
POL(U1_G(x1, x2)) = x1 + x2
POL(U2_G(x1)) = 1 + x1
POL(U4_g(x1)) = x1
POL(U5_g(x1)) = x1
POL(a) = 0
POL(failure_in_g(x1)) = x1
POL(not_zero_in_g(x1)) = 1 + x1
POL(not_zero_out_g) = 1
POL(p_in_ga(x1)) = x1
POL(p_out_ga(x1)) = 2·x1
POL(zero_in_g(x1)) = x1
POL(zero_out_g) = 0
(16) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
not_zero_in_g(X1) → not_zero_out_g
zero_in_g(0) → zero_out_g
U4_g(zero_out_g) → U5_g(failure_in_g(a))
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(17) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(18) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
not_zero_in_g(X1) → not_zero_out_g
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(19) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
U4_g(x0)
zero_in_g(x0)
(20) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
not_zero_in_g(X1) → not_zero_out_g
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(21) Rewriting (EQUIVALENT transformation)
By rewriting [LPAR04] the rule
Q_IN_G(
X) →
U1_G(
X,
not_zero_in_g(
X)) at position [1] we obtained the following new rules [LPAR04]:
Q_IN_G(X) → U1_G(X, not_zero_out_g)
(22) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
The TRS R consists of the following rules:
not_zero_in_g(X1) → not_zero_out_g
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(23) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(24) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(25) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
not_zero_in_g(x0)
(26) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g) → U2_G(p_in_ga(X))
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(27) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U1_G(
X,
not_zero_out_g) →
U2_G(
p_in_ga(
X)) at position [0] we obtained the following new rules [LPAR04]:
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
(28) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0)
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(29) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(30) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
R is empty.
The set Q consists of the following terms:
p_in_ga(x0)
We have to consider all (P,Q,R)-chains.
(31) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(32) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(p_out_ga(Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_out_g)
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(33) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_G(
p_out_ga(
Y)) →
Q_IN_G(
Y) we obtained the following new rules [LPAR04]:
U2_G(p_out_ga(0)) → Q_IN_G(0)
(34) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(X) → U1_G(X, not_zero_out_g)
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
U2_G(p_out_ga(0)) → Q_IN_G(0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(35) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
Q_IN_G(
X) →
U1_G(
X,
not_zero_out_g) we obtained the following new rules [LPAR04]:
Q_IN_G(0) → U1_G(0, not_zero_out_g)
(36) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(0, not_zero_out_g) → U2_G(p_out_ga(0))
U2_G(p_out_ga(0)) → Q_IN_G(0)
Q_IN_G(0) → U1_G(0, not_zero_out_g)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(37) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_G(
p_out_ga(
0)) evaluates to t =
U2_G(
p_out_ga(
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Semiunifier: [ ]
- Matcher: [ ]
Rewriting sequenceU2_G(p_out_ga(0)) →
Q_IN_G(
0)
with rule
U2_G(
p_out_ga(
0)) →
Q_IN_G(
0) at position [] and matcher [ ]
Q_IN_G(0) →
U1_G(
0,
not_zero_out_g)
with rule
Q_IN_G(
0) →
U1_G(
0,
not_zero_out_g) at position [] and matcher [ ]
U1_G(0, not_zero_out_g) →
U2_G(
p_out_ga(
0))
with rule
U1_G(
0,
not_zero_out_g) →
U2_G(
p_out_ga(
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(38) FALSE
(39) PrologToPiTRSProof (SOUND transformation)
We use the technique of [LOPSTR]. With regard to the inferred argument filtering the predicates were used in the following modes:
q_in: (b)
not_zero_in: (b)
Transforming
Prolog into the following
Term Rewriting System:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
q_out_g(
x1) =
q_out_g(
x1)
Infinitary Constructor Rewriting Termination of PiTRS implies Termination of Prolog
(40) Obligation:
Pi-finite rewrite system:
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
q_out_g(
x1) =
q_out_g(
x1)
(41) DependencyPairsProof (EQUIVALENT transformation)
Using Dependency Pairs [AG00,LOPSTR] we result in the following initial DP problem:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
Q_IN_G(X) → NOT_ZERO_IN_G(X)
NOT_ZERO_IN_G(X) → U4_G(X, zero_in_g(X))
NOT_ZERO_IN_G(X) → ZERO_IN_G(X)
U4_G(X, zero_out_g(X)) → U5_G(X, failure_in_g(a))
U4_G(X, zero_out_g(X)) → FAILURE_IN_G(a)
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U1_G(X, not_zero_out_g(X)) → P_IN_GA(X, Y)
U2_G(X, p_out_ga(X, Y)) → U3_G(X, q_in_g(Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
q_out_g(
x1) =
q_out_g(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
NOT_ZERO_IN_G(
x1) =
NOT_ZERO_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
ZERO_IN_G(
x1) =
ZERO_IN_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(42) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
Q_IN_G(X) → NOT_ZERO_IN_G(X)
NOT_ZERO_IN_G(X) → U4_G(X, zero_in_g(X))
NOT_ZERO_IN_G(X) → ZERO_IN_G(X)
U4_G(X, zero_out_g(X)) → U5_G(X, failure_in_g(a))
U4_G(X, zero_out_g(X)) → FAILURE_IN_G(a)
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U1_G(X, not_zero_out_g(X)) → P_IN_GA(X, Y)
U2_G(X, p_out_ga(X, Y)) → U3_G(X, q_in_g(Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
q_out_g(
x1) =
q_out_g(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
NOT_ZERO_IN_G(
x1) =
NOT_ZERO_IN_G(
x1)
U4_G(
x1,
x2) =
U4_G(
x1,
x2)
ZERO_IN_G(
x1) =
ZERO_IN_G(
x1)
U5_G(
x1,
x2) =
U5_G(
x1,
x2)
FAILURE_IN_G(
x1) =
FAILURE_IN_G(
x1)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
P_IN_GA(
x1,
x2) =
P_IN_GA(
x1)
U3_G(
x1,
x2) =
U3_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(43) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LOPSTR] contains 1 SCC with 7 less nodes.
(44) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
q_in_g(X) → U1_g(X, not_zero_in_g(X))
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
failure_in_g(b) → failure_out_g(b)
U5_g(X, failure_out_g(a)) → not_zero_out_g(X)
not_zero_in_g(X1) → not_zero_out_g(X1)
U1_g(X, not_zero_out_g(X)) → U2_g(X, p_in_ga(X, Y))
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
U2_g(X, p_out_ga(X, Y)) → U3_g(X, q_in_g(Y))
U3_g(X, q_out_g(Y)) → q_out_g(X)
The argument filtering Pi contains the following mapping:
q_in_g(
x1) =
q_in_g(
x1)
U1_g(
x1,
x2) =
U1_g(
x1,
x2)
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
b =
b
failure_out_g(
x1) =
failure_out_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
U2_g(
x1,
x2) =
U2_g(
x1,
x2)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
U3_g(
x1,
x2) =
U3_g(
x1,
x2)
q_out_g(
x1) =
q_out_g(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(45) UsableRulesProof (EQUIVALENT transformation)
For (infinitary) constructor rewriting [LOPSTR] we can delete all non-usable rules from R.
(46) Obligation:
Pi DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X, Y))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
p_in_ga(0, 0) → p_out_ga(0, 0)
p_in_ga(s(X), X) → p_out_ga(s(X), X)
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
zero_in_g(0) → zero_out_g(0)
The argument filtering Pi contains the following mapping:
not_zero_in_g(
x1) =
not_zero_in_g(
x1)
U4_g(
x1,
x2) =
U4_g(
x1,
x2)
zero_in_g(
x1) =
zero_in_g(
x1)
0 =
0
zero_out_g(
x1) =
zero_out_g(
x1)
U5_g(
x1,
x2) =
U5_g(
x1,
x2)
failure_in_g(
x1) =
failure_in_g(
x1)
a =
a
not_zero_out_g(
x1) =
not_zero_out_g(
x1)
p_in_ga(
x1,
x2) =
p_in_ga(
x1)
p_out_ga(
x1,
x2) =
p_out_ga(
x1,
x2)
s(
x1) =
s(
x1)
Q_IN_G(
x1) =
Q_IN_G(
x1)
U1_G(
x1,
x2) =
U1_G(
x1,
x2)
U2_G(
x1,
x2) =
U2_G(
x1,
x2)
We have to consider all (P,R,Pi)-chains
(47) PiDPToQDPProof (SOUND transformation)
Transforming (infinitary) constructor rewriting Pi-DP problem [LOPSTR] into ordinary QDP problem [LPAR04] by application of Pi.
(48) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(X, not_zero_out_g(X)) → U2_G(X, p_in_ga(X))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
zero_in_g(0) → zero_out_g(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(49) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
U1_G(
X,
not_zero_out_g(
X)) →
U2_G(
X,
p_in_ga(
X)) at position [1] we obtained the following new rules [LPAR04]:
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
(50) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
p_in_ga(0) → p_out_ga(0, 0)
p_in_ga(s(X)) → p_out_ga(s(X), X)
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
zero_in_g(0) → zero_out_g(0)
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(51) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(52) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
The set Q consists of the following terms:
p_in_ga(x0)
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(53) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
p_in_ga(x0)
(54) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
Q_IN_G(X) → U1_G(X, not_zero_in_g(X))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
The set Q consists of the following terms:
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(55) Narrowing (SOUND transformation)
By narrowing [LPAR04] the rule
Q_IN_G(
X) →
U1_G(
X,
not_zero_in_g(
X)) at position [1] we obtained the following new rules [LPAR04]:
Q_IN_G(x0) → U1_G(x0, U4_g(x0, zero_in_g(x0)))
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
(56) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
Q_IN_G(x0) → U1_G(x0, U4_g(x0, zero_in_g(x0)))
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
The TRS R consists of the following rules:
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
The set Q consists of the following terms:
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(57) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(58) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
The TRS R consists of the following rules:
not_zero_in_g(X) → U4_g(X, zero_in_g(X))
not_zero_in_g(X1) → not_zero_out_g(X1)
zero_in_g(0) → zero_out_g(0)
U4_g(X, zero_out_g(X)) → U5_g(X, failure_in_g(a))
The set Q consists of the following terms:
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(59) UsableRulesProof (EQUIVALENT transformation)
As all Q-normal forms are R-normal forms we are in the innermost case. Hence, by the usable rules processor [LPAR04] we can delete all non-usable rules [FROCOS05] from R.
(60) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
R is empty.
The set Q consists of the following terms:
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
We have to consider all (P,Q,R)-chains.
(61) QReductionProof (EQUIVALENT transformation)
We deleted the following terms from Q as each root-symbol of these terms does neither occur in P nor in R.[THIEMANN].
not_zero_in_g(x0)
U4_g(x0, x1)
zero_in_g(x0)
(62) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(X, p_out_ga(X, Y)) → Q_IN_G(Y)
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(63) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
U2_G(
X,
p_out_ga(
X,
Y)) →
Q_IN_G(
Y) we obtained the following new rules [LPAR04]:
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
U2_G(s(z0), p_out_ga(s(z0), z0)) → Q_IN_G(z0)
(64) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
U2_G(s(z0), p_out_ga(s(z0), z0)) → Q_IN_G(z0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(65) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U2_G(s(z0), p_out_ga(s(z0), z0)) → Q_IN_G(z0)
The remaining pairs can at least be oriented weakly.
Used ordering: Polynomial interpretation [POLO]:
POL(0) = 0
POL(Q_IN_G(x1)) = x1
POL(U1_G(x1, x2)) = x1
POL(U2_G(x1, x2)) = x2
POL(not_zero_out_g(x1)) = 0
POL(p_out_ga(x1, x2)) = x1
POL(s(x1)) = 1 + x1
The following usable rules [FROCOS05] were oriented:
none
(66) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(67) DependencyGraphProof (EQUIVALENT transformation)
The approximation of the Dependency Graph [LPAR04,FROCOS05,EDGSTAR] contains 1 SCC with 1 less node.
(68) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(69) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
Q_IN_G(
x0) →
U1_G(
x0,
not_zero_out_g(
x0)) we obtained the following new rules [LPAR04]:
Q_IN_G(0) → U1_G(0, not_zero_out_g(0))
(70) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
Q_IN_G(0) → U1_G(0, not_zero_out_g(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(71) Instantiation (EQUIVALENT transformation)
By instantiating [LPAR04] the rule
Q_IN_G(
x0) →
U1_G(
x0,
not_zero_out_g(
x0)) we obtained the following new rules [LPAR04]:
Q_IN_G(0) → U1_G(0, not_zero_out_g(0))
(72) Obligation:
Q DP problem:
The TRS P consists of the following rules:
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
Q_IN_G(0) → U1_G(0, not_zero_out_g(0))
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.
(73) NonTerminationProof (EQUIVALENT transformation)
We used the non-termination processor [FROCOS05] to show that the DP problem is infinite.
Found a loop by narrowing to the left:
s =
U2_G(
0,
p_out_ga(
0,
0)) evaluates to t =
U2_G(
0,
p_out_ga(
0,
0))
Thus s starts an infinite chain as s semiunifies with t with the following substitutions:
- Matcher: [ ]
- Semiunifier: [ ]
Rewriting sequenceU2_G(0, p_out_ga(0, 0)) →
Q_IN_G(
0)
with rule
U2_G(
0,
p_out_ga(
0,
0)) →
Q_IN_G(
0) at position [] and matcher [ ]
Q_IN_G(0) →
U1_G(
0,
not_zero_out_g(
0))
with rule
Q_IN_G(
0) →
U1_G(
0,
not_zero_out_g(
0)) at position [] and matcher [ ]
U1_G(0, not_zero_out_g(0)) →
U2_G(
0,
p_out_ga(
0,
0))
with rule
U1_G(
0,
not_zero_out_g(
0)) →
U2_G(
0,
p_out_ga(
0,
0))
Now applying the matcher to the start term leads to a term which is equal to the last term in the rewriting sequence
All these steps are and every following step will be a correct step w.r.t to Q.
(74) FALSE
(75) QDPOrderProof (EQUIVALENT transformation)
We use the reduction pair processor [LPAR04].
The following pairs can be oriented strictly and are deleted.
U2_G(s(z0), p_out_ga(s(z0), z0)) → Q_IN_G(z0)
The remaining pairs can at least be oriented weakly.
Used ordering: Matrix interpretation [MATRO]:
POL(Q_IN_G(x1)) = | 1 | + | | · | x1 |
POL(U1_G(x1, x2)) = | 1 | + | | · | x1 | + | | · | x2 |
POL(not_zero_out_g(x1)) = | | + | | · | x1 |
POL(U2_G(x1, x2)) = | 1 | + | | · | x1 | + | | · | x2 |
POL(p_out_ga(x1, x2)) = | | + | | · | x1 | + | | · | x2 |
The following usable rules [FROCOS05] were oriented:
none
(76) Obligation:
Q DP problem:
The TRS P consists of the following rules:
Q_IN_G(x0) → U1_G(x0, not_zero_out_g(x0))
U1_G(0, not_zero_out_g(0)) → U2_G(0, p_out_ga(0, 0))
U1_G(s(x0), not_zero_out_g(s(x0))) → U2_G(s(x0), p_out_ga(s(x0), x0))
U2_G(0, p_out_ga(0, 0)) → Q_IN_G(0)
R is empty.
Q is empty.
We have to consider all (P,Q,R)-chains.